Penerapan Decision Tree Regression dalam Memprediksi Harga Rumah di Provinsi Jawa Barat
DOI:
https://doi.org/10.58776/jriti.v1i3.64Kata Kunci:
Harga Rumah, Machine Learning, Multiple Linear Regression, Decision Tree, SVM, Jawa Barat, PrediksiAbstrak
A house plays an important role as a basic necessity, not only as a shelter and place of rest. Additionally, the selling price of a house is greatly influenced by environmental factors such as proximity to shopping centers, office buildings, land size, and others. To gain a more accurate understanding and predict the selling price of houses, this research proposes the application of machine learning methods. This study involves the use of three machine learning algorithms: multiple linear regression, decision tree regression, and linear support vector regression to predict house prices in West Java Province. By utilizing historical data and various relevant features, such as the number of rooms, bathrooms, garages, land area, and width, the machine learning algorithms will conduct complex analyses and provide more accurate price estimations. The expected outcome of this research is to provide valuable insights for stakeholders in the property industry in West Java Province. The adoption of machine learning approaches is anticipated to enhance the ability to predict house prices and provide useful information for buyers, sellers, and other relevant parties in making better decisions in property transactions.
Referensi
Badan Pusat Statistik, “Kepadatan Penduduk menurut Provinsi (jiwa/km2),” Badan Pusat Statistik. [Online]. Available: https://www.bps.go.id/indicator/12/141/1/kepadatan-penduduk-menurut-provinsi.html. [Accessed: 14-Jul-2023].
M. R. Fahlepi and A. Widjaja, “Penerapan Metode Multiple Linear Regression Untuk Prediksi Harga Sewa Kamar Kost,” Jurnal STRATEGI-Jurnal Maranatha, vol. 1, no. 2, pp. 615–629, 2019.
P. Venkatasubbu and M. Ganesh, “Used Cars Price Prediction using Supervised Learning Techniques,” International Journal of Engineering and Advanced Technology, vol. 9, no. 1S3, pp. 216–223, 2019.
Ping-Feng Pai and Wen-Chang Wang, “Using Machine Learning Models and Actual Transaction Data for Predicting Real Estate Prices,” Applied Sciences, vol. 10, no. 17, p. 5832, 2020.
J. A. Abdella, N. Zaki, K. Shuaib, and F. Khan, “Airline ticket price and demand prediction: A survey,” Journal of King Saud University - Computer and Information Sciences, vol. 33, no. 4, 2019.
E. Jumin, F. B. Basaruddin, Y. Bte. M. Yusoff, S. D. Latif, and A. N. Ahmed, “Solar radiation prediction using boosted decision tree regression model: A case study in Malaysia,” Environmental Science and Pollution Research, vol. 28, no. 21, pp. 26571–26583, 2021.
H. Lyu, “Cryptocurrency Price forecasting: A Comparative Study of Machine Learning Model in Short-Term Trading,” IEEE Xplore, 2022.
K. M. Hindrayani, T. M. Fahrudin, R. P. Aji, and E. M. Safitri, “Indonesian Stock Price Prediction including Covid19 Era Using Decision Tree Regression,” IEEE Xplore, 2020.
CH. R. Madhuri, G. Anuradha, and M. V. Pujitha, “House Price Prediction Using Regression Techniques: A Comparative Study,” IEEE Xplore, 2019.
M. Thamarai and S. P. Malarvizhi, “House Price Prediction Modeling Using Machine Learning,” International Journal of Information Engineering and Electronic Business, vol. 12, no. 2, pp. 15–20, 2020.
S. Lahmiri, S. Bekiros, and C. Avdoulas, “A comparative assessment of machine learning methods for predicting housing prices using Bayesian optimization,” Decision Analytics Journal, vol. 6, p. 100166, 2023.
M. Javed Awan, M. Shafry Mohd Rahim, H. Nobanee, A. Munawar, A. Yasin, and A. Mohd Zain Azlanmz, “Social Media and Stock Market Prediction: A Big Data Approach,” Computers, Materials & Continua, vol. 67, no. 2, pp. 2569–2583, 2021.
E. Eka Patriya, “IMPLEMENTASI SUPPORT VECTOR MACHINE PADA PREDIKSI HARGA SAHAM GABUNGAN (IHSG),” Jurnal Ilmiah Teknologi dan Rekayasa, vol. 25, no. 1, pp. 24–38, 2020.
R. Nopianti, A. T. Panudju, and A. Permana, “Prediksi Harga Saham Indonesia pada Masa Covid-19 Menggunakan Regresi Pohon Keputusan,” Jurnal Ecodemica Jurnal Ekonomi Manajemen dan Bisnis, vol. 6, no. 1, pp. 68–76, 2022.
O. Somantri, S. Purwaningrum, and R, Riyanto, “MODEL SUPPORT VEKTOR MACHINE (SVM) BERDASARKAN PARAMETER WINDOWS UNTUK PREDIKSI KEKUATAN GEMPA BUMI,” JTT (Jurnal Teknologi Terapan), vol. 8 no. 1, pp. 17–24, 2022.
M. A. Hasanah, S. Soim, and A. S. Handayani, “Implementasi CRISP-DM Model Menggunakan Metode Decision Tree dengan Algoritma CART untuk Prediksi Curah Hujan Berpotensi Banjir,” Journal of Applied Informatics and Computing, vol. 5, no. 2, pp. 103–108, 2021.
A. F. Boy, “Implementasi Data Mining Dalam Memprediksi Harga Crude Palm Oil (CPO) Pasar Domestik Menggunakan Algoritma Regresi Linier Berganda (Studi Kasus Dinas Perkebunan Provinsi Sumatera Utara),” Journal of Science and Social Research, vol. 3, no. 2, pp. 78–85, 2020.
Fatkhuroji, S. Santosa, and R. A. Pramunendar, “PREDIKSI HARGA KEDELAI LOKAL DAN KEDELAI IMPOR DENGAN METODE SUPPORT VECTOR MACHINE BERBASIS FORWARD SELECTION,” Jurnal Cyberku, vol. 15, no. 1, pp. 61–76, 2019.
D. Sepri and A. Fauzi, “PREDIKSI HARGA CABAI MERAH MENGGUNAKAN SUPPORT VECTOR REGRESSION,” Computer Based Information System Journal, vol. 8, no. 2, pp. 1–5, 2020.
A. Saiful, “Prediksi Harga Rumah Menggunakan Web Scrapping dan Machine Learning Dengan Algoritma Linear Regression,” JATISI (Jurnal Teknik Informatika dan Sistem Informasi), vol. 8, no. 1, pp. 41–50, 2021.
H. W. Herwanto, T. Widiyaningtyas, and P. Indriana, “Penerapan Algoritme Linear Regression untuk Prediksi Hasil Panen Tanaman Padi,” Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI), vol. 8, no. 4, p. 364, 2019.
A. R. Aziz, B. Warsito, and A. Prahutama, “PENGARUH TRANSFORMASI DATA PADA METODE LEARNING VECTOR QUANTIZATION TERHADAP AKURASI KLASIFIKASI DIAGNOSIS PENYAKIT JANTUNG,” Jurnal Gaussian, vol. 10, no. 1, pp. 21–30, 2021.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Nafis Almajid, Yanuar Ginting, Alif Izzudin Ramadhan
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.