Pengolahan Limbah Industri Kimia dalam Satu Dekade terakhir: Systematic Literature Review (SLR)
DOI:
https://doi.org/10.58776/snarmudika.v1i1.90Kata Kunci:
industri kimia, pengolahan limbah industri, SLRAbstrak
Studi literatur ini bertujuan untuk memberikan dan menganalisis gambaran penelitian mengenai pengolahan limbah industri kimia (chemical industrial waste treatment) dalam satu dekade terakhir, dari tahun 2013 hingga 2023. Artikel jurnal yang teridentifikasi berasal dari database Taylor & Francis Online. Penelitian ini menggunakan Systematic Literature Review (SLR), dengan diagram alir PRISMA yang mampu menunjukkan aktivitas inklusi dan hasil pencarian data. Dari 613 artikel yang tersebar di 12 sub-bidang dipilih dan diseleksi menjadi 135 artikel jurnal, kemudian dianalisis sehingga diperoleh 33 artikel. Hasilnya terdapat 22 artikel yang telah memenuhi kriteria inklusi dan dipilih untuk ditinjau. Hasil yang diperoleh dari artikel-artikel penelitian pengolahan limbah industri kimia mengalami perkembangan yang signifikan walaupun terdapat sempat mengalami jeda waktu yang mengakibatkan tidak ada artikel yang terbit di beberapa waktu. Dari hasil analisis, mayoritas penulis artikel penelitian mengenai pengolahan limbah industri kimia berasal dari India, diikuti oleh Prancis, China, dan Italia, serta mulai muncul keberagaman penulis yang berasal dari Negara-negara di Asia. Jumlah sitasi artikel jurnal terbanyak diperoleh pada tahun 2013 dengan total jumlah sitasi 77. Dari artikel dengan sitasi paling banyak tersebut diketahui metode penelitian yang populer digunakan yaitu sintesis hijau dengan keseluruhan temuan penelitian menunjukkan hasil yang positif. Kedepannya, dapat dimasukkan lebih banyak aspek dan lebih banyak jenis artikel untuk dianalisis dan harus dapat memanfaatkan waktu yang lebih lama dalam melakukan studi literatur.
Kata Kunci: SLR, Pengolahan Limbah Industri Kimia
Referensi
S. Garcia Fracaro et al., “Towards design guidelines for virtual reality training for the chemical industry,” Educ. Chem. Eng., vol. 36, pp. 12–23, 2021, doi: 10.1016/j.ece.2021.01.014.
R. Srinivasan, B. Srinivasan, M. U. Iqbal, A. Nemet, and Z. Kravanja, “Recent developments towards enhancing process safety: Inherent safety and cognitive engineering,” Comput. Chem. Eng., vol. 128, pp. 364–383, 2019, doi: 10.1016/j.compchemeng.2019.05.034.
J. Lee, I. Cameron, and M. Hassall, “Improving process safety: What roles for digitalization and industry 4.0?,” Process Saf. Environ. Prot., vol. 132, pp. 325–339, 2019, doi: 10.1016/j.psep.2019.10.021.
A. Bhusari, A. Goh, H. Ai, S. Sathanapally, M. Jalal, and R. A. Mentzer, “Process safety incidents across 14 industries,” Process Saf. Prog., vol. 40, no. 1, pp. 1–9, 2021, doi: 10.1002/prs.12158.
A. Toniato, O. Schilter, and T. Laino, “The Role of AI in Driving the Sustainability of the Chemical Industry,” Chimia (Aarau)., vol. 77, no. 3, pp. 144–149, 2023, doi: 10.2533/chimia.2023.144.
J. A. Malik and S. Marathe, Ecological and Health Effects of Building Materials, no. September. 2021.
P. K. Singh, P. S. Pollution, N. S. Pollution, G. Gases, G. Effect, and O. L. Depletion, “Principles and Applications of Environmental Biotechnology for a Sustainable Future,” Princ. Appl. Environ. Biotechnol. a Sustain. Futur., 2017, doi: 10.1007/978-981-10-1866-4.
S. Belayutham, V. A. González, and T. W. Yiu, “A cleaner production-pollution prevention-based framework for construction site induced water pollution,” J. Clean. Prod., vol. 135, pp. 1363–1378, 2016, doi: 10.1016/j.jclepro.2016.07.003.
J. A. Silva, “Wastewater Treatment and Reuse for Sustainable Water Resources Management: A Systematic Literature Review,” Sustain., vol. 15, no. 14, 2023, doi: 10.3390/su151410940.
A. Di Vaio, S. Hasan, R. Palladino, and R. Hassan, “The transition towards circular economy and waste within accounting and accountability models: a systematic literature review and conceptual framework,” Environ. Dev. Sustain., vol. 25, no. 1, pp. 734–810, 2023, doi: 10.1007/s10668-021-02078-5.
Z. Ni, H. K. Chan, and Z. Tan, “Systematic literature review of reverse logistics for e-waste: overview, analysis, and future research agenda,” Int. J. Logist. Res. Appl., 2021, doi: 10.1080/13675567.2021.1993159.
X. Chen, L. Xu, Z. Ren, F. Jia, and Y. Yu, “Sustainable supply chain management in the leather industry: a systematic literature review,” Int. J. Logist. Res. Appl., vol. 0, no. 0, pp. 1–41, 2022, doi: 10.1080/13675567.2022.2104233.
G. Karunasena et al., “Liquid waste management in the construction sector: a systematic literature review,” Int. J. Constr. Manag., vol. 0, no. 0, pp. 1–11, 2023, doi: 10.1080/15623599.2023.2211416.
O. Vieira, R. S. Ribeiro, J. L. Diaz de Tuesta, H. T. Gomes, and A. M. T. Silva, “A systematic literature review on the conversion of plastic wastes into valuable 2D graphene-based materials,” Chem. Eng. J., vol. 428, 2022, doi: 10.1016/j.cej.2021.131399.
J. Higgins and S. Green, Cochrane Handbook for Systematic Reviews of Interventions. San Francisco: Wiley-BlackWell, 2008.
E. Stovold, D. Beecher, R. Foxlee, and A. Noel-Storr, “Study flow diagrams in Cochrane systematic review updates: An adapted PRISMA flow diagram,” Syst. Rev., vol. 3, no. 1, pp. 1–5, 2014, doi: 10.1186/2046-4053-3-54.
M. Nikravan, R. Firdous, and D. Stephan, “Life cycle assessment of alkali-activated materials: a systematic literature review,” Low-carbon Mater. Green Constr., vol. 1, no. 1, pp. 1–24, 2023, doi: 10.1007/s44242-023-00014-6.
S. F. Clarke, W. Nawaz, C. Skelhorn, and A. Amato, “Towards a more sustainable waste management in Qatar: Retrofitting mindsets and changing behaviours,” QScience Connect, vol. 2017, no. 1, 2017, doi: 10.5339/connect.2017.qgbc.4.
M. Lombardi, D. Berardi, M. Galuppi, and M. Barbieri, “Green Tunnel Solutions: An Overview of Sustainability Trends in the Last Decade (2013–2022),” Buildings, vol. 13, no. 2, 2023, doi: 10.3390/buildings13020392.
J. Yang, C. Jiang, J. Yang, C. Qian, D. Fang, and P. Taylor, “A clean procedure for the synthesis of 1 , 4- dihydropyridines via Hantzsch reaction in water,” Green Chem. Lett. Rev., vol. 8253, 2013, doi: 10.1080/17518253.2013.781686.
E. Abdul et al., “Green methodologies in organic synthesis : recent developments in our laboratories,” Green Chem. Lett. Rev., vol. 8253, 2013, doi: 10.1080/17518253.2012.740078.
S. Aerry, A. Kumar, A. Saxena, A. De, and S. Mozumdar, “Chemoselective acetylation of amines and thiols using monodispersed Ni-nanoparticles,” Green Chem. Lett. Rev., vol. 8253, 2013, doi: 10.1080/17518253.2012.737029.
X. Yin et al., “High-performance visible-light active Sr-doped porous LaFeO 3 semiconductor prepared via sol–gel method,” Green Chem. Lett. Rev., 2022, doi 10.1080/17518253.2022.2112093.
A. Chaskar, V. Padalkar, K. Phatangare, and S. Takale, “An efficient and practical synthesis of 1- silica-supported sodium hydrogen sulfate as a heterogeneous catalyst,” Green Chem. Lett. Rev., vol. 8253, 2013, doi: 10.1080/17518253.2012.739209.
B. S. Reddy, A. Naidu, and P. K. Dubey, “PEG-600-Mediated, Green and Efficient, Tandem Syntheses of N-subtituted-2-styrylquinazolin-4- ones,” Green Chem. Lett. Rev., vol. 8253, 2013, doi: 10.1080/17518253.2012.742142.
R. A. Hameed et al., “Green synthesis of zinc sulfide nanoparticles- organic heterocyclic polyol system as eco-friendly anti-corrosion and anti-bacterial corrosion inhibitor for steel in acidic environment,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2141585.
J. Lakshmidevi et al., “A waste valorization strategy for the synthesis of phenols from ( hetero ) aryl boronic acids using pomegranate peel ash extract,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2082261.
A. Naysmith, N. S. Mian, and S. Rana, “Development of conductive textile fabric using Plackett – Burman optimized green synthesized silver nanoparticles and in situ polymerized polypyrrole Development of conductive textile fabric using Plackett – Burman optimized green synthesized silver nanop,” Green Chem. Lett. Rev., 2023, doi: 10.1080/17518253.2022.2158690.
L. Vieira-sellaï et al., “Green HPLC quantification method of lamivudine , zidovudine, and nevirapine with identification of related substances in tablets,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2129463.
A. L. Flourat, N. Zeaiter, E. Vallée, V. P. T. Nguyen, and F. Allais, “A sustainable preparative-scale chemo-enzymatic synthesis of 6-hydroxy-5 , 7-dimethoxy-2-naphthoic acid ( DMNA ) from sinapic acid,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2115317.
Z. Kudličková, M. Stahorský, R. Michalková, and M. Vilková, “Mechanochemical synthesis of indolyl chalcones with antiproliferative activity,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2089061.
M. Khan et al., “Mitigating the growth of plant pathogenic bacterium , fungi , and nematode by using plant-mediated synthesis of copper oxide nanoparticles ( CuO NPs ),” Green Chem. Lett. Rev., 2023, doi: 10.1080/17518253.2023.2177520.
M. G. A. Cruz et al., “Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock,” Green Chem. Lett. Rev., 2023, doi: 10.1080/17518253.2023.2196031.
V. Sukumar, S. Chinnusamy, H. Kumar, and S. Rathinam, “Method development and validation of Atorvastatin , Ezetimibe, and Fenofibrate using RP- HPLC along with their forced degradation studies and greenness profiling,” Green Chem. Lett. Rev., 2023, doi: 10.1080/17518253.2023.2198651.
N. Dharuman and K. S. Lakshmi, “Environmental benign RP-HPLC method for the simultaneous estimation of anti-hypertensive drugs using analytical quality by design,” Green Chem. Lett. Rev., no. May, 2023, doi: 10.1080/17518253.2023.2214176.
J. Pichler et al., “Moving towards green lubrication : tribological behavior and chemical characterization of spent coffee grounds oil,” Green Chem. Lett. Rev., no. May, 2023, doi: 10.1080/17518253.2023.2215243.
I. Karume et al., “One-pot removal of pharmaceuticals and toxic heavy metals from water using xerogel- immobilized quartz / banana peels-activated carbon,” Green Chem. Lett. Rev., 2023, doi: 10.1080/17518253.2023.2238726.
C. Blazquez-Barbadillo et al., “Benign synthesis of therapeutic agents : domino dihydropyridines in the ball-mill,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2129464.
D. Blasi et al., “Revealing the effects of the ball milling pretreatment on the ethanosolv fractionation of lignin from walnut and pistachio shells,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2143244.
J. Gómez-carpintero et al., “A sequential multistep process for the fully mechanochemical , one-pot synthesis of the antiepileptic drug rufinamide of the antiepileptic drug ru fi namide,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2123717.
M. O. Alfred et al., “Sunlight-driven photocatalytic mineralization of antibiotic chemical and selected enteric bacteria in water via zinc tungstate-imprinted kaolinite,” Green Chem. Lett. Rev., 2022, doi: 10.1080/17518253.2022.2124889.
Unduhan
Diterbitkan
Terbitan
Bagian
Kategori
Lisensi
Hak Cipta (c) 2024 Lintang Rizkyta Ananda

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.