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Abstract 
In this paper, we introduce a new probabilistic relational database model as an extension 
of the classical relational database model for interval probability set-valued attributes to 
represent and handle uncertain and imprecise information in practice. To develop the new 
model, we use extended probabilistic values for representing interval probability set-
valued relational attributes and the probabilistic interpretation of binary relations on sets 
for computing uncertain degree of functional dependencies, keys and relations on attribute 
values, and propose the new combination strategies of extended probabilistic values for 
building probabilistic relational algebraic operations. A set of the properties of the basic 
probabilistic relational algebraic operations is also formulated and proven.  
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1 Introduction  
As we know, information in practice may be uncertain and imprecise, but the classical relational database model 

(CRDB) in [1], [2], and [3] is limited for representing and handling uncertain and imprecise information. Currently, 
there have been many non-classical database models, including probabilistic relational database models (PRDB), 
such as [4], [5], and [6], studied and built to overcome the limitation of CRDB. However, no model would be so 
universal that could include all measures and tackle all aspects of uncertainty of information in the real world. 

PRDB models for uncertain and imprecise information are extended and built as extensions of CRDB based on 
the probability theory. There are two main types of PRDB models. The first one defines a probabilistic relation as a 
set of tuples such that each tuple is associated with a probability to express the uncertainty degree of it in the relation. 
The second one defines a probabilistic relation as a set of tuples such that each tuple attribute is associated with a 
probability to represent the uncertainty degree of the values that it may take. 

The first PRDB model type is the extension of CRDB at the relation level, as the works in [7], [8] and [9] thereby 
each tuple of a relation was associated with a probability in the interval [0, 1] to represent the uncertainty membership 
degree of that tuple for the relation. However, in many natural situations, we cannot know precisely the probability 
that we can only estimate as an approximate number in a subinterval of [0, 1]. The models in [10-13] were extended 
with probability intervals associated with each tuple to overcome the shortcoming of the models in [7-9]. 
Nevertheless, the PRDB models did not express the uncertainty of attribute values of relations that it only was inferred 
from the uncertainty membership degree of tuple of the relations. 

The second PRDB model type is the extension of CRDB at the attribute level, as the works in [14] and [15], 
thereby each value of an attribute was assigned to a probability in the interval [0, 1] to represent the uncertain level 
for that attribute taking the value. More generally, in [16], each attribute was associated with a probability distribution 
on a set of values to express the possibility that the attribute might take one of values of the set with a distributed 
probability. However, in many real cases, we cannot define precisely the probability distribution function for each 
value in a set that we can only estimate as an approximate number in a subinterval of [0, 1]. The model in [17] 
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overcame the restriction by using a pair of lower and upper-bound probability distribution functions to represent the 
possibility of an attribute taking a value in a set with a computed probability interval from the distribution function 
pair. Nevertheless, the model did not allow attributes to take set values and, thus it was limited in the real applications.  

Recently, the model in [17] has been extended for uncertain multivalued attributes as in [18]. However, when 
the probabilistic relations in [17] and [18] have many attributes, the number of generated probability distribution 
functions is too large to lead to low performance in manipulating data. The model in [19] overcame the shortcoming 
of the model in [17] by using probability intervals on a set to represent attribute values. Howerver, the model in [19] 
did not allow multivalued attributes. For instance, the attribute P_DISEASE in [19] was represented by P_DISEASE: 
{(hepatitis, [0.3, 0.5]),  (cirrhosis, [0.5, 0.7])} to say that the patient’s disease might be hepatitis with a probability in 
the interval [0.3, 0.5] or cirrhosis with a probability in the interval [0.5, 0.7]. However, in practice, a patient may 
have both hepatitis and cirrhosis with a determined probability interval such as [0.4, 0.6], then the model in [19] 
cannot represent. The model in [20] overcame the shortcoming of the model in [19] by associating each relational 
attribute with a distribution of probability intervals on a set of value sets. However, in [20], the probabilistic 
functional dependency and schema key of relations haven’t been defined. In addition, except the selection operation, 
other probabilistic relational algebraic operations haven’t been built for the model in [20]. Thus, the ability of 
representing and dealing with uncertain information of it has been limited in the real world applications.       

In this paper, we define notions of the probabilistic functional dependency and schema key of relations and 
extend the model in [20] with a full set of basic probabilistic relational algebraic operations to a new probabilistic 
relational database model to overcome the limitations of the models in [19] and [20]. The new probabilistic relational 
database model is abbreviated by EIPRDB to be an extension of the IPRDB model in [19] with interval probability 
set-valued attributes (i.e., interval probability multivalued attributes). Some properties of EIPRDB algebraic 
operations are also proposed, formulated and proven.  

To build EIPRDB, we use extended probabilistic values in [20] for representing uncertain set-valued 
attributes of relations, employ probabilistic interpretations of binary relations on sets in [19], operators on 
probability intervals in [18], and propose new combination strategies of extended probabilistic values to define 
the probabilistic relational algebraic operations for computing and querying uncertain and imprecise 
information on EIPRDB relations. The built EIPRDB model is able to represent and manipulate effectively 
uncertain and imprecise information and can be applied to solve problems in real databases. 

Basic probability definitions as a mathematical foundation for EIPRDB are presented in Section 2. The EIPRDB 
data model, including the schema, relation, database, probabilistic functional dependency, and the relational schema 
key is introduced in Section 3. Section 4 introduces probabilistic relational algebraic operations on EIPRDB and their 
properties. Section 5 presents the achieved results and discussions of the EIPRDB model. Finally, Section 6 concludes 
the paper and outlines further research directions.  

2 Probability and Probabilistic Combination Strategies  
In this section, some probability definitions and probabilistic combination strategies are presented as the basis 

for representing and handling uncertain information in EIPRDB.  

2.1 Extended Probabilistic Values  
Extended probabilistic values over a set of sets in [20] used to represent uncertain set-valued attributes of 

EIPRDB relations are defined as below. 
Definition 1. Let τ be a data type and D be the domain of τ, an extended probabilistic value on the domain of τ is a 
finite set of pairs {(v1, [l1, u1]), …, (vm, [lm, um])}, where vi belongs to 2D, vi and vj are disjointed and 0 ≤ li ≤ ui ≤ 1, 
for every i, j = 1, 2, …, m. 

Informally, an extended probabilistic value pv = {(v1, [l1, u1]), …, (vm, [lm, um])} says that pv’s value is exactly 
one member (set) vi of the set V = {v1,…, vm} and the probability that pv’s value is vi belongs to the interval [li, ui]. 
An extended probabilistic value pv = {(v1, [l1, u1]), …, (vm, [lm, um])} corresponds with a probability distribution 
function p over V = {v1,…, vm} such that p(vi) ∈ [li, ui], i = 1,…, m and Σvi∈V p(vi) ≤ 1. 
Example 1. Suppose a patient’s disease is diagnosed as hepatitis and cirrhosis with a probability between 0.3 and 
0.5 or cholecystitis with a probability between 0.5 and 0.7. Then, this information may be represented by the extended 
probabilistic value {({hepatitis, cirrhosis}, [0.3, 0.5]), (cholecystitis, [0.5, 0.7])}. 
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We note that an element x in D is also considered as a special set {x} on D, thus an extended probabilistic value 
{({x1}, [l1, u1]), ({x2}, [l2, u2]),…, ({xk}, [lk, uk])} can be written as {(x1, [l1, u1]), (x2, [l2, u2]),…, (xk, [lk, uk])} for 
simplicity. Also, an extended probabilistic value can be denoted by pv = {(v, I)| v ∈ 2D, I = [l, u] ⊆ [0, 1]}. 

2.2 Probabilistic Interpretation of Binary Relations on Sets 
The probabilistic interpretation of binary relations on sets in [20] used to compute the uncertain degree of 

relations on attribute values in EIPRDB and is defined as follows.  
Definition 2. Let A and B be sets, U and V be value domains, and θ be a binary relation from {=, ≠, ≤, ≥, <, >, ⊆, ⊇}. 
The probabilistic interpretation of the relation A θ B, denoted Pr(A θ B), is a value in [0, 1] that is defined by 

1. Pr(A θ B) = p(u θ v| u∈A, v∈B), where A is a subset of U, B is a subset of V and θ ∈ {=, ≠, ≤, <, ≥, >} assumed 
to be valid on (U×V), p(u θ v| u∈A, v∈B) is the conditional probability of u θ v given u∈A and v∈B. 

2. Pr(A θ B) = �𝑝𝑝
(𝑢𝑢 ∈ 𝐵𝐵| 𝑢𝑢∈𝐴𝐴), θ is the relation ⊆
𝑝𝑝(𝑢𝑢 ∈ 𝐴𝐴| 𝑢𝑢∈𝐵𝐵), θ is the relation ⊇  

where A and B are two subsets of U, p(u ∈ B| u∈A) is the conditional probability for u∈B given u∈A and p(u ∈ 
A| u∈B) is the conditional probability for u∈A given u∈B.  

Example 2. Some probabilistic interpretations of the set relations on the domain consisting of natural numbers are 
computed as follows. 

Pr({4, 5} = {5, 6}) = p(u = v| u ∈ {4, 5}, v ∈ {5, 6}) = 0.25.  
Pr(4, 5} < {5, 6}) = p(u < v | u ∈{4, 5}, v ∈ {5, 6}) = 0.75. 
Pr({4, 5} ⊆ {5, 6}) = p(u ∈ {5, 6}u ∈{4, 5}) = 0.5.  
Pr({4, 5} ⊇ {5}) = p(u ∈ {4, 5}u ∈{5}) = 1.0. 

2.3 Combination Strategies of Probability Intervals  
In many real situations, the probability of an event may not be defined or computed exactly. Then, a probability 

interval can be used instead of a precise single probability value. Let two events e1 and e2 have probabilities in the 
intervals [l1, u1] and [l2, u2], respectively. Then, the probability intervals of the conjunction event e1 ∧ e2, disjunction 
event e1 ∨ e2, and difference event e1 ∧ ¬e2 can be computed by alternative strategies given in [20], where ⊗, ⊕, and 
⊖ denote the conjunction, disjunction, and difference operators, respectively and are defined as below. 

1. Independence conjunction, disjunction, and difference strategies, denoted ⊗in, ⊕in, and ⊖in respectively, are 
determined by: 
• [l1, u1] ⊗in[l2, u2] = [l1 . l2, u1 . u2], 
• [l1, u1] ⊕in[l2, u2] = [l1 + l2  – (l1 . l2), u1 + u2  – (u1 . u2)], 
• [l1, u1] ⊖in[l2, u2] = [l1 . (1 – u2), u1 . (1– l2)]. 

2. Mutual exclusion conjunction, disjunction, and difference strategies (when e1 and e2 are mutually exclusive), 
denoted ⊗me, ⊕me, and ⊖me respectively, are determined by: 
• [l1, u1] ⊗me[l2, u2] = [0, 0], 
• [l1, u1] ⊕me[l2, u2] = [min(1, l1 + l2), min(1, u1 + u2)], 
• [l1, u1] ⊖me[l2, u2] = [l1, min(u1, 1 – l2)]. 

3. Positive correlation conjunction, disjunction, and difference strategies (when e1 implies e2, or e2 implies e1), 
denoted ⊗pc, ⊕pc, and ⊖pc respectively, are determined by: 
• [l1, u1] ⊗pc[l2, u2] = [min(l1, l2), min(u1, u2)], 
• [l1, u1] ⊕pc[l2, u2] = [max(l1, l2), max(u1, u2)], 
• [l1, u1] ⊖pc[l2, u2] = [max(0, l1 – u2), max(0, u1 –l2)]. 

4. Ignorance conjunction, disjunction, and difference strategies, denoted ⊗ig, ⊕ig, and ⊖ig respectively, are 
determined by: 
• [l1, u1] ⊗ig[l2, u2] = [max(0, l1 + l2 – 1), min(u1, u2)], 
• [l1, u1] ⊕ig[l2, u2] = [max(l1, l2 ), min(1, u1 + u2)], 
• [l1, u1] ⊖ig[l2, u2] = [max(0, l1 – u2 ), min(u1,1– l2)]. 
In the following sections, the notation [l1, u1] ⊆ [l2, u2] is used to denote l2 ≤ l1 and u1 ≤ u2. Also, a single 

probability value p can be treated as the probability interval [p, p] and the operation p.[l, u] computed as [p.l, 
p.u]. 
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2.4 Conjunction, Disjunction, and Difference of Extended Probabilistic Values  
To develop EIPRDB algebraic operations, we extend the conjunction, disjunction, and difference of probabilistic 

values in [19] for extended probabilistic values for combining the probability interval of set values of attributes in 
outcome relations of these algebraic operations as the following definitions.  
Definition 3. Let pv1 and pv2 be two extended probabilistic values and ⊗ be a probabilistic conjunction strategy. The 
conjunction of pv1 and pv2 under ⊗, denoted by pv1 ⊗ pv2, is the extended probabilistic value pv defined by pv = 
{(v1∩v2, I1 ⊗ I2) | (v1, I1) ∈ pv1, (v2, I2) ∈ pv2}. 
Example 3. Let pv1 = {(hepatitis, [0.7, 0.8]), (cholecystitis, [0.2, 0.3])} and pv2 = {({hepatitis, cirrhosis}, [1.0, 1.0])} 
be extended probabilistic values, then pv1 ⊗in pv2 under the independence probabilistic conjunction strategy is the 
extended probabilistic value pv = {(hepatitis, [0.7, 0.8])}. 
Definition 4. Let pv1 and pv2 be two extended probabilistic values and ⊕ be a probabilistic disjunction strategy. The 
disjunction of pv1 and pv2 under ⊕, denoted by pv1 ⊕ pv2, is the extended probabilistic value pv defined by pv ={(v1, 
I1) | (v1, I1) ∈ pv1 and ¬∃ (v2, I2) ∈ pv2, v2∩v1 ≠ ∅}∪{(v2, I2) | (v2, I2) ∈ pv2 and ¬∃ (v1, I1) ∈ pv1, v1∩v2 ≠ ∅}∪{(v1 ∪ 
v2, I1 ⊕ I2) | (v1, I1) ∈ pv1, (v2, I2) ∈ pv2 and v1∩v2 ≠ ∅}.  
Example 4. Let pv1 = {({hepatitis, cirrhosis}, [0.2, 0.6]), (cholecystitis, [0.2, 0.6])} and pv2 = {({hepatitis, cirrhosis}, 
[0.3, 0.65]), (pancreatitis, [0.3, 0.65])} be extended probabilistic values, then pv1 ⊕in pv2 under the independence 
probabilistic disjunction strategy is the extended probabilistic value pv = {(cholecystitis, [0.2, 0.6]), (pancreatitis, 
[0.3, 0.65]), ({hepatitis, cirrhosis}, [0.44, 0.86])}.  
Definition 5. Let pv1 and pv2 be two extended probabilistic values and ⊖ be a probabilistic difference strategy. The 
difference of pv1 and pv2 under ⊖, denoted by pt1 ⊖ pt2, is the extended probabilistic value pv defined by pv ={(v1, 
I1) | (v1, I1) ∈ pv1 and ¬∃ (v2, I2) ∈ pv2, v2∩v1 ≠ ∅} ∪ {(v1, I1⊖I2) | (v1, I1) ∈ pv1, ∃ (v2, I2) ∈ pv2 and v2∩v1 ≠ ∅}. 

3 EIPRDB Data Model 
EIPRDB data model consists of basic components such as the schema, probabilistic relation, and database to 

represent data and relationships between them. 

3.1 EIPRDB Schemas and Relations  
The EIPRDB schema is extended from that of CRDB with uncertain set-valued attributes as follows.  

Definition 6. An EIPRDB schema is a pair R = (U, ℘), where  
1. U = {A1, A2, …, Ak} is a set of pairwise different attributes.  
2. ℘ is a function that maps each attribute A ∈ U to the set of all extended probabilistic values on the domain of A.  

We can use the notation R(U, ℘) and R to denote the schema R = (U, ℘) and dom(A) to denote the domain of 
the attribute A. 

An EIPRDB relation is an instance of an EIPRDB schema, where each relational attribute is associated with an 
extended probabilistic value to represent an uncertain value set that the attribute may take. The EIPRDB relation is 
extended from that of CRDB in [1] and [2] as the following definition.    
Definition 7. Let U = {A1, A2, …, Ak} be a set of k pairwise different attributes. An EIPRDB relation r over the 
schema R(U, ℘) is a finite set of elements {t1, t2,…, tn}, where each ti = (pvi1, pvi2,…, pvik) is a list of k extended 
probabilistic values pvij ={(vij, [lij, uij])| vij ∈ 2dom(Aj), [lij, uij] ⊆ [0, 1]}, j =1, 2,…, k  such that pvij ∈℘(Aj) for every i 
= 1, 2, …, n.  

Each element ti in the relation r over R(U, ℘) is called a tuple on U. The attribute Aj of the tuple ti may take a 
uncertain value set represented by pvij. We write ti.Aj or ti[Aj] to denote pvij and [ti] to replace (Vi1, Vi2, …, Vik ), where 
Vij = {vij | (vij, [lij, uij]) ∈ pvij}. The symbol ti[H], where H ⊆ U, denotes the rest of the tuple ti after eliminating the 
values of attributes in U not belonging to H. In addition, if we only care about a unique relation over a schema then 
we can unify the relation’s name and its schema’s name.  
Example 5. A simple EIPRDB relation, named DIAGNOSE, over the EIPRDB schema DIAGNOSE({D_ID, P_ID, 
P_NAME, P_AGE, P_DISEASE, DATE, D_COST}, ℘) in the database about patients at the clinic of a hospital can 
be given as Table 1. In the relation, the attributes P_ID, P_NAME, P_AGE, P_DISEASE and D_COST describe the 
information about the identifier, name, age, disease and daily treatment cost of each patient, respectively while D_ID 
and DATE represent the identifier of a doctor and the date that the doctor diagnoses the disease for a patient. In 
reality, while diagnosing the doctors can be unsure of the disease of patients. Also, the daily treatment cost for patients 
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is not sure even the patients learn about their diseases. For instance, the information of the patient Blair says that the 
patient is 60 years old, diagnosed on 15/11/2024, may have lung cancer or tuberculosis with the probability 0.5 and 
has to pay the daily treatment cost $30 with the probability between 0.3 and 0.6 or $35 with the probability between 
0.4 and 0.7. Note that, for each attribute A in the schema DIAGNOSE, ℘(A) includes all extended probabilistic 
values on the domain of A (Definition 6). In addition, for simplicity, each extended probabilistic value {(v, [1, 1])}, 
where v ∈ dom(A), will be represented as a single value v (such as extended probabilistic values for the attribute 
P_ID). Because if an attribute takes such an extended probabilistic value, then it only takes a value v with the 
probability of 1.0 (Definition 1). In other words, the attribute certainly takes the value v.  

Table 1. Relation DIAGNOSE 

D_ID P_ID P_NAME P_AGE P_DISEASE DATE D_COST 

DT093 P104 Blair {(60, [1, 1])} {(lung cancer, [0.5, 0.5]), 
(tuberculosis, [0.5, 0.5])} 

15/11/2024 {($30, [0.3, 0.6]), 
($35, [0.4, 0.7])} 

DT102 P218 Oliver 
{(46, [0.5, 0.5]), 
(47, [0.5, 0.5])} 

{({hepatitis, cirrhosis}, [0.5, 0.7]), 
(cholecystitis, [0.3, 0.5])} 

18/11/2024 {($8, [0.4, 0.5]), 
($9, [0.5, 0.6])} 

DT102 P325 Mary {(36, [1, 1])} {(duodenitis, [0.5, 0.5]), (gastritis, 
[0.5, 0.5])} 

18/11/2024 {($8, [0.5, 0.5]), 
($9, [0.5, 0.5])} 

DT102 P412 Anna {(15, [1, 1])} {({bronchitis, angina}, [1, 1])} 
18/11/2024 {($12, [0.5, 0.5]), 

($13, [0.5, 0.5]} 

DT025 P426 Bill {(36, [1, 1])} {(duodenitis, [0.4, 0.5]), (gastritis, 
[0.5, 0.6])} 

19/11/2024 {($8, [0.3, 0.5]), 
($9, [0.5, 0.7])} 

The EIPRDB relational database is defined as an extension of CRDB with uncertain set-valued attributes as 
follows.   
Definition 8. An EIPRDB relational database over a set of uncertain set-valued attributes is a set of EIPRDB 
relations corresponding to the set of their EIPRDB schemas. 

3.2 EIPRDB Functional Dependencies  
The functional dependency in EIPRDB is an extension of that in CRDB [3] with probabilistic valued attributes 

based on the probability measure for the equal degree of two extended probabilistic values of the same attribute for 
two different tuples in a relation as follows. 
Definition 9. Let R(U, ℘) be an EIPRDB schema, r be a relation over R and t1 and t2 be two tuples in r, A be an 
attribute of U, and ⊗ be a probabilistic conjunction strategy. The probability interval for the values of the attribute A 
of two tuples t1 and t2 to be equal under ⊗, denoted by p(t1.A =⊗ t2.A), is ⊕𝑖𝑖=1

𝑚𝑚 ⊕𝑗𝑗=1
𝑛𝑛 (([l1i, u1i] ⊗ [l2j, u2j]).Pr(v1i = 

v2j)), where t1.A = {(v11, [l11, u11]), …, (v1m, [l1m, u1m])}, t2.A = {(v21, [l21, u21]), …, (v2n, [l2n, u2n])} and ⊕ is the mutual 
exclusion probabilistic disjunction operator.   
Definition 10. Let R = (U, ℘) be an EIPRDB schema, r be any relation over R, ⊗ be a probabilistic conjunction 
strategy, X and Y be two non-empty subsets of U. An EIPRDB functional dependency of Y on X under ⊗, denoted 
by X →⊗ Y, holds if and only if 

∀t1, t2 ∈ r: ⊗A∈X p(t1.A =⊗ t2.A) ≤ ⊗A∈Y p(t1.A =⊗ t2.A). 
It is easy to see that for every EIPRDB schema R(U, ℘), then U →⊗ Y with Y ⊆ U under all probabilistic 

conjunction strategies. 
Example 6. In every relation r over the schema DIAGNOSE with the set of attributes U = {D_ID, P_ID, P_NAME, 
P_AGE, P_DISEASE, DATE, D_COST} in Example 5, the values of the attributes D_ID and  P_ID that express the 
identifiers of doctors and patients, respectively are single and pairwise different. Thus, for two tuples t1, t2 ∈ r and 
an attribute A∈ U, then p(t1.D_ID =⊗ t2.D_ID) ⊗ p(t1.P_ID =⊗ t2.P_ID) = 0 and p(t1.A =⊗ t2.A) ≥ 0. So, p(t1.D_ID =⊗ 
t2.D_ID) ⊗ p(t1.P_ID =⊗ t2.P_ID) ≤ ⊗A∈Y p(t1.A =⊗ t2.A) with Y ⊆ U, by Definition 10, there is the EIPRDB functional 
dependency {D_ID, P_ID} →⊗ Y in the schema DIAGNOSE under all probabilistic conjunction strategies. 

As in CRDB [1-3], the keys of a schema in EIPRDB are the basis for recognizing a tuple of a probabilistic 
relation. In the model and management systems of the classical relational database [3], key attributes cannot take the 
null value. Similarly, in EIPRDB, we assume that the value of each key attribute is always definite and unique. The 
concept of the key of EIPRDB schemas is defined using the probabilistic functional dependency as follows.  
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Definition 11. Let R(U, ℘) be an EIPRDB schema, r be any relation over R, and ⊗ be a probabilistic conjunction 
strategy. A set of attributes K ⊆ U is a key of R under ⊗ if the value of the attributes of K is definite and there is a 
probabilistic functional dependency K →⊗ U such that there does not exist any proper subset of K holding this 
property.          
Example 7. From the result of Example 6, we have {D_ID, P_ID} →⊗ Y for every Y ⊆ U. Thus {D_ID, P_ID} →⊗ 
U. Hence, {D_ID, P_ID} is a key of the schema DIAGNOSE under all probabilistic conjunction strategies. 

4 EIPRDB Algebra  
The EIPRDB algebra is a set of basic probabilistic relational algebraic operations such as the selection, 

projection, Cartesian product, join, intersection, union, and difference. The EIPRDB algebra or the probabilistic 
relational algebra is an extension of the CRDB algebra with probabilistic set values of relational attributes to 
manipulate, handle, and query uncertain and imprecise information on EIPRDB.    

4.1 Selection  
The selection is a basic algebraic operation in EIPRDB for querying on the relations of databases. The selection 

operation in EIPRDB is extended from that of CRDB taking into account uncertain set-valued relational attributes. 
Before defining the selection operation, we present the formal syntax and semantics of selection expressions and 
conditions as follows.    
Definition 12. Let R be an EIPRDB schema and X be a set of relational tuple variables. Then selection expressions 
are inductively defined and have one of the following forms:  

1. x.A θ c, where x ∈ X, A is an attribute in R, θ is a binary relation from {=, ≠, ≤, ≥, <, >, ⊆, ⊇}, c ∈ 2D, and D is 
dom(A).    

2. x.A1 θ⊗ x.A2, where x ∈ X, A1 and A2 are two different attributes in R, and ⊗ is a probabilistic conjunction strategy.  
3. α ⊗ β, where α and β are selection expressions on the same relational tuple variable, and ⊗ is a probabilistic 

conjunction strategy.   
4. α ⊕ β, where α and β are selection expressions on the same relational tuple variable, and ⊕ is a probabilistic 

disjunction strategy.  
Example 8. Consider the schema DIAGNOSE in Example 5, the selection of “all patients who have angina and pay 
the daily treatment cost over 9 USD” can be represented by the selection expression x.P_DISEASE = angina ⊗ 
x.D_COST > 9. 

Selection conditions in EIPRDB are the extensions of those in CRDB and formally defined as below.  
Definition 13. Let R be an EIPRDB schema. Then selection conditions are inductively defined as follows: 

1. If α is a selection expression and [l, u] is a subinterval of [0, 1], then (α)[l, u] is a selection condition.  
2. If ϕ and ω are selection conditions on the same tuple variable, then ¬ϕ, (ϕ ∧ ω), (ϕ ∨ ω) are selection conditions.   

Example 9. Given the schema DIAGNOSE in Example 5, the selection of “all patients who are not over 55 years 
old with a probability of at least 0.9 or have cholecystitis and pay the daily treatment cost not less than 8 USD with 
a probability from 0.5 to 0.7” can be done using the selection condition (x.P_AGE ≤ 55)[0.9, 1.0] ∨ (x.P_DISEASE 
= cholecystitis ⊗ x.D_COST ≥ 8)[0.5, 0.7].  

The probabilistic interpretation of selection expressions in EIPRDB is defined on the probabilistic interpretation 
of binary relations of sets as below. 
Definition 14. Let R be an EIPRDB schema, r be a relation over R, x be a tuple variable, and t be a tuple in r. The 
probabilistic interpretation of selection expressions with respect to R, r and t, denoted by ProbR,r,t, is the partial 
mapping from the set of all selection expressions to the set of all closed subintervals of [0, 1] that is inductively 
defined as follows:    

1. ProbR,r,t(x.A θ c) = ⊕𝑖𝑖=1
𝑘𝑘 [li, ui].Pr(vi θ c), where t.A = {(v1, [l1, u1]), …, (vk, [lk, uk])} and ⊕ is the mutual exclusion 

probabilistic disjunction operator.  
2. ProbR,r,t(x.A1 θ⊗ x.A2) = ⊕𝑖𝑖=1

𝑚𝑚 ⊕𝑗𝑗=1
𝑛𝑛 (([l1i, u1i] ⊗ [l2j, u2j]).Pr(v1i θ v2j)), where t.A1 = {(v11, [l11, u11]), …, (v1m, [l1m, 

u1m])}, t.A2 = {(v21, [l21, u21]), …, (v2n, [l2n, u2n])} and ⊕ is the mutual exclusion probabilistic disjunction operator. 
3. ProbR,r,t(α ⊗ β) = ProbR,r,t(α) ⊗ ProbR,r,t(β).  
4. ProbR,r,t(α ⊕ β) = ProbR,r,t(α) ⊕ ProbR,r,t(β). 

We note that the mutual exclusion probabilistic disjunction operator ⊕me is used in the item 1 of Definition 14 
because the extended probabilistic value t.A = {(v1, [l1, u1]), …, (vk, [lk, uk])} of the attribute A of the tuple t in r 
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represents a distribution function of probability intervals over the set {v1,…, vk} (Definition 1 and 7), likewise with 
the item 2 for the extended probabilistic values t.A1 = {(v11, [l11, u11]), …, (v1m, [l1m, u1m])} and t.A2 = {(v21, [l21, u21]), 
…, (v2n, [l2n, u2n])}. Intuitively, ProbR,r,t(x.A θ c) is the probability interval for the attribute A of the tuple t having a 
(set) value vi such that vi θ c, while ProbR,r,t(x.A1 θ⊗ x.A2) is the probability interval for the attributes A1 and A2 of the 
tuple t having values v1i and v2j, respectively, such that v1i θ v2j under ⊗.   
Example 10. Let R denote the schema DIAGNOSE and r denote the relation DIAGNOSE in Example 5. Consider 
the first tuple in r, denoted by t1. Applying the item 1 of Definition 14, using the probabilistic interpretation of the 
binary relations on sets in Definition 2 for the relations 30 ≥ 32 and 35 ≥ 32 and the mutual exclusion probabilistic 
disjunction ⊕me defined in the section 2.3 , we have 

ProbR,r,t1(x. D_COST ≥ 32) = [0.3, 0.6].Pr(30 ≥ 32) ⊕me[0.4, 0.7].Pr(35 ≥ 32) 
= [0.3, 0.6]×0.0 ⊕me [0.4, 0.7]×1.0  
= [0, 0] ⊕me [0.4, 0.7] = [0.4, 0.7].  

The satisfaction of selection conditions in EIPRDB is defined on the probabilistic interpretation of selection 
expressions as below.  
Definition 15. Let R be an EIPRDB schema, r be a relation over R, and t ∈ r. The satisfaction of selection conditions 
under ProbR,r,t is defined as follows:  

1. ProbR,r,t ⊨ (α)[l, u] if and only if (iff) ProbR,r,t(α) ⊆ [l, u]. 
2. ProbR,r,t ⊨ ¬ϕ iff ProbR,r,t ⊨ ϕ does not hold.    
3. ProbR,r,t ⊨ ϕ ∧ ω iff ProbR,r,t ⊨ ϕ and ProbR,r,t ⊨ ω. 
4. ProbR,r,t ⊨ ϕ ∨ ω iff ProbR,r,t ⊨ ϕ or ProbR,r,t ⊨ ω. 

Now, the selection operation on a relation in EIPRDB is defined as follows. 
Definition 16. Let R be an EIPRDB schema, r be a relation over R, and ϕ be a selection condition over a tuple 
variable x. The selection on r with respect to ϕ, denoted by σϕ(r), is the relation r* = {t ∈ r | ProbR,r,t ⊨ ϕ} over R, 
including all satisfied tuples of the selection condition ϕ. 

Example 11. Let r denote the relation DIAGNOSE in Example 5 and R denote its schema. The query “Find all 
patients who are over 45 years old with a probability of at least 0.9, and have both hepatitis and cirrhosis and pay the 
daily treatment cost not less than 7 USD with a probability between 0.4 and 0.8” can be done by the selection 
operation σϕ(DIAGNOSE), where ϕ = (x.P_AGE > 45)[0.9, 1.0] ∧ (x.P_DISEASE ⊇ {hepatitis, cirrhosis} ⊗in 
x.D_COST ≥ 7)[0.4, 0.8]. 

The selection σϕ(DIAGNOSE) is implemented by checking the satisfaction of all tuples in the relation 
DIAGNOSE under Definition 15 and 16 for the selection condition ϕ. Applying Definition 14, we can see that only 
one patient denoted by the second tuple t2 of the relation DIAGNOSE in Example 5 satisfies ϕ, because:  

ProbR,r,t2(x.P_AGE > 45) = [0.5, 0.5]×Pr(46 > 45) ⊕me [0.5, 0.5]×Pr(47 > 45) 
                    = [0.5, 0.5]×1.0 ⊕me [0.5, 0.5]×1.0 

        = [1.0, 1.0] ⊆ [0.9, 1.0].        
ProbR,r,t2(x.P_DISEASE ⊇ {hepatitis, cirrhosis}) 

               = [0.5, 0.7].Pr({hepatitis, cirrhosis} ⊇ {hepatitis, cirrhosis})  
                  ⊕me [0.3, 0.5].Pr({cholecystitis} ⊇ {hepatitis, cirrhosis}) 
             = [0.5, 0.7]×1.0 ⊕me [0.3, 0.5]×0.0 

        = [0.5, 0.7] ⊕me [0, 0] = [0.5, 0.7].  
ProbR,r,t2(x.D_COST ≥7) = [0.4, 0.5]×Pr(8 ≥ 7) ⊕me [0.5, 0.6]×Pr(9 ≥ 7) 

        = [0.4, 0.5] ×1.0 ⊕me [0.5, 0.6]×1.0  
             = [0.4, 0.5] ⊕me [0.5, 0.6] = [0.9, 1.0].    

ProbR,r,t2(x.P_DISEASE ⊇{hepatitis, cirrhosis}⊗in x.D_COST ≥ 7) = [0.5, 0.7] ⊗in [0.9, 1.0] = [0.45, 0.7] ⊆ [0.4, 
0.8].  

Hence, ProbR,r,t2 ⊨ (x.P_AGE > 45)[0.9, 1.0] and ProbR,r,t2 ⊨ (x.P_DISEASE ⊇ {hepatitis, cirrhosis}⊗in 
x.D_COST ≥ 7)[0.4, 0.8]. Thus t2 satisfies ϕ. 

For the other tuples, one has ProbR,r,ti(x.P_DISEASE ⊇ {hepatitis, cirrhosis} ⊗in x.D_COST ≥ 7) = [0, 0] ⊄ [0.4, 
0.8], ∀i ≠ 2. Thus, the result of the query is as Table 2. 
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Table 2. Relation σϕ(DIAGNOSE)  

D_ID P_ID P_NAME P_AGE P_DISEASE DATE D_COST 

DT102 P218 Oliver 
{(46, [0.5, 0.5]), 
(47, [0.5, 0.5])} 

{({hepatitis, cirrhosis}, [0.5, 0.7]), 
(cholecystitis, [0.3, 0.5])} 

18/11/2024 {($8, [0.4, 0.5]), 
($9, [0.5, 0.6])} 

4.2 Projection  
The projection of an EIPRDB relation on a set of attributes is an extension of that of a CRDB relation with 

uncertain set-valued tuples such that the projected tuples having the same value should be merged into a tuple in the 
result relation by a probabilistic disjunction strategy.   
Definition 17. Let R(U, ℘) be an EIPRDB schema, r be a relation over R, X be a subset of attributes of U, ⊕ be a 
probabilistic disjunction strategy. The projection of r on X under ⊕, denoted by ΠX⊕(r), is the relation r* over the 
schema R* determined by:  

1. R* = (X, ℘*) and ℘*(A) = ℘(A), ∀A ∈ X.   
2. r* = {t* | t*.A = u.A ⊕…⊕ w.A, ∀A ∈ X, ∃ u, …, w ∈ r such that [u[X]] = …= [w[X]]}. 

Example 12. Consider the relation DIAGNOSE over the schema DIAGNOSE({D_ID , P_ID, P_NAME, P_AGE, 
P_DISEASE, DATE,  D_COST}, ℘) as in Table 1, then the projection of it on the set of the attributes X = {P_AGE, 
P_DISEASE, D_COST} under ⊕in is the relation ΠX⊕in(DIAGNOSE) over the schema R*({P_AGE, P_DISEASE, 
D_COST}, ℘*) computed as in Table 3, where ℘*(A) = ℘(A), ∀A ∈ X. 

Table 3. Relation Π{P_AGE, P_DISEASE, D_COST}⊕in(DIAGNOSE)  

P_AGE P_DISEASE D_COST 

{(60, [1, 1])} {(lung cancer, [0.5, 0.5]), 
(tuberculosis, [0.5, 0.5])} 

{($30, [0.3, 0.6]), ($35, [0.4, 
0.7])} 

{(46, [0.5, 0.5]), 
(47, [0.5, 0.5])} 

{({hepatitis, cirrhosis}, [0.5, 0.7]), 
(cholecystitis, [0.3, 0.5])} 

{($8, [0.4, 0.5]), ($9, [0.5, 0.6])} 

{(15, [1, 1])} {({bronchitis, angina}, [1, 1])} 
{($12, [0.5, 0.5]), ($13, [0.5, 

0.5]} 

{(36, [1, 1])} {(duodenitis, [0.7, 0.75]), (gastritis, 
[0.75, 0.8])} 

{($8, [0.65, 0.75]), ($9, [0.75, 
0.85])} 

Note that in the relation DIAGNOSE, we have [t3[X]] = [t5[X]], thus two tuples, t3 and t5, are projected on X and 
merged into the tuple t4 under the independence probabilistic disjunction strategy ⊕in in Table 3. 

4.3 Cartesian Product  
As in CRDB, for defining Cartesian product of two relations in EIPRDB, we assume the set of attributes of their 

schemas are disjoint, and every k-tuple t = (pv1, pv2, …, pvk) of extended probabilistic values is an unordered list. 
The Cartesian product of two EIPRDB relations is extended from that of two CRDB relations with uncertain set-
valued tuples as follows.   
Definition 18. Let U1, U2 be two sets of attributes that do not have any common element, R1(U1, ℘1), R2(U2, ℘2) be 
two EIPRDB schemas, r1, r2 be two relations over R1 and R2, respectively. The Cartesian product of r1 and r2, denoted 
by r1 × r2, is the relation r over R, determined by:  

1. R = (U, ℘), where U = U1 ∪ U2, ℘(A) = ℘1(A) if A ∈U1 and ℘(A) = ℘2(A) if A∈U2. 
2. r = {t | t.A = t1.A if A ∈ U1, t.A = t2.A if A ∈ U2, t1 ∈ r1, t2 ∈ r2}. 

4.4 Join  
The join of two EIPRDB relations is an extension of the natural join of two CRDB relations with uncertain set-

valued tuples as below. 
Definition 19. Let U1 and U2 be two sets of attributes such that if they have the same name attributes, respectively, 
in those two sets, then such attributes have the same value domain. Let R1(U1, ℘1) and R2(U2, ℘2) be two EIPRDB 
schemas, r1 and r2 be two relations over R1 and R2, respectively, and ⊗ be a probabilistic conjunction strategy. The 
join of r1 and r2 under ⊗, denoted by r1 ⋈⊗ r2, is the relation r over the schema R, determined by: 
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1. R = (U, ℘) where U = U1 ∪ U2, ℘(A) = ℘1(A) if A ∈U1- U2, ℘(A) = ℘2(A) if A ∈ U2 - U1 and ℘(A) = 
℘1(A) =℘2(A) if A∈ U1∩U2.  

2. r = {t | t.A = t1.A if A ∈ U1 − U2, t.A = t2.A if A ∈ U2 − U1, t.A = t1.A ⊗ t2.A if A ∈ U1 ∩ U2, t1 ∈ r1, t2 ∈ r2}. 
Example 13. Let PATIENT1 and PATIENT2 be two EIPRDB relations as in Tables 4 and 5, then the result of the 
join of them under the probabilistic conjunction strategy ⊗in is the relation PATIENT1⋈⊗in PATIENT2 computed as 
in Table 6. Here, the name of each relation and its schema are identical and the set ℘(A) for each attribute A in the 
schemas consists of all extended probabilistic values on dom(A). 

Table 4. Relation PATIENT1 

P_ID P_DISEASE 
P325 {(bronchitis, [0.3, 0.4]), (bronchiectasis, [0.6, 0.7)} 
P510 {({cholecystitis, gall-stone}, [1, 1])} 

Table 5. Relation PATIENT2 

P_NAME P_DISEASE 
Peter {(bronchiectasis, [1, 1])} 

George {({cholecystitis, gall-stone}, [0.5, 0.7]), (cirrhosis, [0.3, 0.5])} 

Table 6. Relation PATIENT1 ⋈⊗in PATIENT2 

P_ID P_NAME P_DISEASE 
P325 Peter {(bronchiectasis, [0.6, 0.7)} 
P510 George {({cholecystitis, gall-stone}, [0.5, 0.7])} 

4.5 Intersection, Union and Difference  
The intersection, union, and difference of two EIPRDB relations over the same schema is an EIPRDB relation 

over that schema, where two tuples that have the same key, respectively of those two relations, should be merged 
into a tuple in the result relation by a probabilistic combination strategy. Here, two tuples have the same key value 
like two identical tuples in CRDB. Thus, the operations are the extensions of those in CRDB with uncertain set-
valued tuples. The intersection, union, and difference of two EIPRDB relations are defined as follows.   
Definition 20. Let R(U, ℘) be an EIPRDB schema, r1, and r2 be two relations over R, K be a key of R, and ⊗ be a 
probabilistic conjunction strategy. The intersection of r1 and r2 under ⊗, denoted by r1∩⊗r2, is the EIPRDB relation 
r over R defined by r = {t | t.A = t1.A ⊗ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U, such that t1[K] = t2[K]}.  

We note that the value of each key is definite under Definition 11. Thus, the notation t1[K] = t2[K] can be used in 
Definition 20. Moreover, we can uniquely determine a tuple of a relation under every key of the relation. So, the 
result relation is unique under all the keys.       
Definition 21. Let R(U, ℘) be an EIPRDB schema, r1 and r2 be two relations over R, K be a key of R, ⊕ be a 
probabilistic disjunction strategy. The union of r1 and r2 under ⊕, denoted by r1∪⊕ r2, is the EIPRDB relation r over 
R defined by r = {t1 ∈ r1 | ∀t2 ∈ r2, t1[K] ≠ t2[K]}∪{t2 ∈ r2 | ∀t1 ∈ r1, t2[K] ≠ t1[K]}∪{t | t.A = t1.A ⊕ t2.A, t1 ∈ r1, t2 ∈ 
r2, A ∈ U such that t1[K] = t2[K]}.   
Example 14. Let DIAGNOSE1 and DIAGNOSE2 be two EIPRDB relations over the same schema 
DIAGNOSE({P_ID, D_ID, P_DISEASE, D_COST}, ℘) as in Tables 7 and 8, where {P_ID, D_ID} is the key of 
this schema and the set ℘(A) for each attribute A in DIAGNOSE consists of all extended probabilistic values on 
dom(A). Then, the result of the union of them under ⊕in is the relation DIAGNOSE1∪⊕inDIAGNOSE2 computed as 
in Table 9. 

Table 7. Relation DIAGNOSE1 

P_ID D_ ID P_DISEASE D_COST 

P216 DT012 {(lung cancer, [0.3, 0.6]), (tuberculosis, [0.4, 0.7])} {($30, [0.3, 0.4]), ($35, [0.6, 
0.7])} 

P244 DT024 {({hepatitis, cirrhosis}, [0.2, 0.5]), (cholecystitis, [0.3, 
0.6])} {($8, [0.6, 1])} 
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Table 8. Relation DIAGNOSE2 

P_ID D_ ID P_DISEASE D_COST 

P218 DT012 {(lung cancer, [1, 1])} {($30, [1, 1])} 

P244 DT024 {({hepatitis, cirrhosis}, [0.3, 0.6]), (pancreatitis, [0.3, 
0.7])} {($7, [0.2, 0.5]), ($8, [0.5, 0.8])} 

P252 DT025 {(dyspepsia, [1, 1])} {($5, [1, 1])} 

Table 9. Relation DIAGNOSE1∪⊕inDIAGNOSE2 

P_ID D_ ID P_DISEASE D_COST 

P216 DT012 {(lung cancer, [0.3, 0.6]), (tuberculosis, [0.4, 0.7])} {($30, [0.3, 0.4]), ($35, [0.6, 
0.7])} 

P218 DT012 {(lung cancer, [1, 1])} {($30, [1, 1])} 
P252 DT025 {(dyspepsia, [1, 1])} {($5, [1, 1])} 

P244 DT024 {({hepatitis, cirrhosis}, [0.44, 0.8]), (cholecystitis, [0.3, 
0.6]), (pancreatitis, [0.3, 0.7])} 

{($7, [0.2, 0.5]), ($8, [0.8, 1])} 

 We note that the second tuple in Table 7 and the second tuple in Table 8 have the same key value coalesced into 
the fourth tuple under ⊕in in Table 9. 
Definition 22. Let R(U, ℘) be an EIPRDB schema, r1 and r2 be two relations over R, K be a key of R, and ⊖ be a 
probabilistic difference strategy. The difference of r1 and r2 under ⊖, denoted by r1∪⊖ r2, is the EIPRDB relation r 
over R defined by r = {t1 ∈ r1 | ∀t2 ∈ r2, t1[K] ≠ t2[K]}∪{t | t.A = t1.A ⊖ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U such that t1[K] = 
t2[K]}. 

We note that, as for Definitions 20, the result relation in Definitions 21 and 22 does not depend on choosing the 
key of its schema. 

4.6 Property of Algebraic Operations  
The basic properties of EIPRDB algebra are extened from those of  CRDB algebra with uncertain set-valued 

tuples (i.e., extended probabilistic values). These properties say that the IPRDB model is sound and coherent. 
Proposition 1. Let R be an EIPRDB schema, r be a relation over R, and ϕ and ω be two selection conditions on r. 
Then, 

σϕ(σω(r)) = σω(σϕ(r))             (1) 

Proof: Let ρ = σω(r). By Definition 15 and 16, we have 
σϕ(σω(r)) = {t∈ρ | ProbR,ρ,t⊨ ϕ}  

                 = {t∈r | (ProbR,r,t⊨ ω) ∧ (ProbR,ρ,t⊨ ϕ)} 
                 = {t∈r | (ProbR,r,t⊨ ω) ∧ (ProbR,r,t⊨ ϕ)} (because ρ ⊆  r) 
                 = {t∈r | ProbR,r,t ⊨ ϕ ∧ω} = σϕ ∧ω(r).  

Thus, the equation σϕ(σω(r)) = σϕ∧ω(r) is proven. The equation σω(σϕ(r)) = σω∧ϕ(r) is similarly proven, since ω∧ϕ  

⇔ ϕ ∧ω. So, Proposition 1 is proven. 
Proposition 2. Let R be an EIPRDB schema, r be a relation over R, ⊕ be a probabilistic disjunction strategy, A and 
B be two subsets of attributes of R, A ⊆ B. Then, 

ΠA⊕(ΠB⊕(r)) = ΠA⊕(r)                   (2) 
Proof: Because A ⊆ B, so A∩B = A and sides of (2) are the relations over the same schema. From Definition 17, it 
is easy to see ΠA⊕(ΠB⊕(r)) = ΠA∩B⊕(r) = ΠA⊕(r) under the probabilistic disjunction strategy ⊕. Thus, the equation (2) 
is proven. 
Proposition 3. Let R1, R2, and R3 be the EIPRDB schemas such that if they have the same name attributes, then such 
attributes have the same value domain, r1, r2, and r3 be relations over R1, R2, and R3, respectively, ⊗ be a probabilistic 
conjunction strategy. Then, 

r1 ⋈⊗ r2 = r2 ⋈⊗ r1                           (3) 
 (r1 ⋈⊗ r2) ⋈⊗ r3 = r1 ⋈⊗ (r2 ⋈⊗ r3)                   (4) 

The equations (3) and (4) say that the join of EIPRDB relations is commutative and associative. 
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Proof: It is easy to see that r1 ⋈⊗ r2 and r2 ⋈⊗ r1 are two relations over the same schema. By Definition 3, the 
conjunction of extended probabilistic values is commutative (due to the commutativity of probabilistic conjunction 
strategies). So, by Definition 19, it follows that r1 ⋈⊗ r2 = r2 ⋈⊗ r1.  

According to Definition 19, the results of two sides of (4) are the relations over the same schema. Moreover, 
according to Definition 3, the conjunction of extended probabilistic values is associative. Under Definition 19 and 
from the associativity of the classical relational natural join, it follows that the join of EIPRDB relations is associative. 
Thus, it results in (r1 ⋈⊗ r2) ⋈⊗ r3 = r1 ⋈⊗ (r2 ⋈⊗ r3).  

Because the Cartesian product (Definition 18) is a particular case of the join, it yields the straight result of 
Proposition 3 below.  
Corollary 1. Let R1, R2, and R3 be EIPRDB schemas such that they do not have the same name attributes, r1, r2, and 
r3 be relations over R1, R2, and R3, respectively. Then, 
         r1 × r2 = r2 × r1                                 (5) 
                (r1 × r2) × r3 = r1 × (r2 × r3)                   (6) 
Proposition 4. Let R be an EIPRDB schema, r1, r2, and r3 be relations over R. Let ⊗/⊕ be a probabilistic 
conjunction/disjunction strategy. Then, 

  r1 ∩⊗ r2 = r2 ∩⊗ r1                   (7) 
           (r1 ∩⊗ r2) ∩⊗ r3 = r1 ∩⊗ (r2 ∩⊗ r3)                 (8) 

   r1 ∪⊕ r2 = r2 ∪⊕ r1                  (9) 
            (r1 ∪⊕ r2) ∪⊕ r3 = r1 ∪⊕ (r2 ∪⊕ r3)                 (10)   

Equations of (7), (8), (9), and (10) say that the intersection and union of relations in EIPRDB are commutative 
and associative.  
Proof: From the commutativity and associativity of the probabilistic conjunction strategies, it follows that the 
conjunction of extended probabilistic values has the commutativity and associativity (Definition 3). So, the 
intersection of EIPRDB relations r1, r2, and r3 under the probabilistic conjunction strategy ⊗ and every chosen key 
also has commutativity and associativity. From that, according to Definition 20, we have  Equations (7) and (8).   

From the commutativity and associativity of the probabilistic disjunction strategies, it follows that the disjunction 
of extended probabilistic values has the commutativity and associativity (Definition 4). So, the union of EIPRDB 
relations r1, r2, and r3 under the probabilistic disjunction strategy ⊕ and every chosen key also has commutativity 
and associativity. From that, according to Definition 21, we have Equations (9) and (10). 

5 Results and Discussions 
As presented in previous sections, we can see that EIPRDB is an extension of CRDB and the second type PRDB 

models as in [14], [15], [16], [19], and [20] with extended probabilistic values (i.e., probabilistic intervals for value 
sets). In addition, EIPRDB also has the ability of querying and manipulating data more effectively than the second 
type PRDB models as in [17] and [18]. A more detailed discussion of the obtained results is as below. 

5.1 Extension of EIPRDB in representing and handling data  
As introduced above, there are two main types of the PRDB models. The first type one, named T-1PRDB, 

represents a probabilistic relation as a set of tuples whose membership degree is a probability in [0, 1], such as [7] 
and [9]. In the models, each relational attribute of a tuple is associated with a single value to say that the attribute 
may take the value with a probability computed and inferred from the membership degree of the tuple. The T-1PRDB 
algebraic operations are defined by directly extending the CRDB algebraic operations based on computing and 
combining probabilities of tuples in the T-1PRDB relations.    

The second type one, named T-2PRDB, represents a probabilistic relation as a set of tuples whose membership 
degree is a probability in {0, 1}, such as [14] and [15]. In the models, each relational attribute of a tuple is associated 
with a single probability value as (v, p) to say that the attribute may take the value v with the probability p. Some 
extended models of T-2PRDB such as [16], named ET-2PRDB, where each relational attribute of a tuple is associated 
with a probability distribution as {(v1, p1),..., (vm, pm)} to say that the attribute may take one of values vi with the 
probability pi. The T-2PRDB and ET-2PRDB algebraic operations are defined by extending the CRDB algebraic 
operations using the operators on single probabilities or probability distributions for computing and combining 
probabilities of attribute values in the T-2PRDB or ET-2PRDB relations.               
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Because, in some real cases, we cannot know precisely the probability pi in the distribution function {(v1, p1),..., 
(vm, pm)}, thus the ET-2PRDB models are extended with probabilistic values to a new T-2PRDB model and named 
IPRDB as in [19]. In IPRDB, each relational attribute of a tuple is associated with a probabilistic value {(v1, [l1, u1]), 
…, (vm, [lm, um])} to say that the attribute may take one of single values vi with a probability in the interval [li, ui]. 
The IPRDB algebraic operations are defined by extending the CRDB algebraic operations employing the operators 
on interval probabilities for computing and combining probabilities of attribute values in the IPRDB relations.  

However, the IPRDB model cannot represent and handle set-valued attributes (i.e., multivalued attributes),  
consequently, it is extended to a new T-2PRDB model  and named UIRDB as in [20]  that can express and manipulate 
set-valued attributes. In UIRDB, each relational attribute of a tuple is associated with an extended probabilistic value 
{(V1, [l1, u1]), …, (Vm, [lm, um])} to say that the attribute may take one of value sets Vi with a probability in the interval 
[li, ui]. The UIRDB selection operation is defined by extending the IPRDB selection operation using the probabilistic 
interpretations of binary relations on sets and the combination strategies of probabilistic intervals of extended 
probabilistic values in the UIRDB relations. Nevertheless, the probabilistic functional dependency, schema key of 
relations as well as other probabilistic relational algebraic operations haven’t been defined in UIRDB. Thus, the 
ability of representing and dealing with uncertain information of it has been limited in the real world applications.  

As presented in previous sections, we can see that the proposed EIPRDB model belongs to the second type PRDB 
models (T-2PRDBs), where each relational attribute of a tuple is associated with an extended probabilistic value pv 
= {(V1, [l1, u1]), …, (Vm, [lm, um])} (as a distribution of probability intervals on a finite set of value sets) to say that 
the attribute may take one set of values Vi with a probability in [li, ui]. Thus, the EIPRDB model is an extension of 
the IPRDB model in [19] with set-valued attributes. Moreover, the EIPRDB model is also an extension of the UIRDB 
model in [20] with the probabilistic functional dependency (PFD), schema key of relations and a full set of 
probabilistic relational algebraic operations. The EIPRDB algebraic operations are defined by extending the IPRDB 
algebraic operations employing the probabilistic interpretations of binary relations on sets and the combination 
strategies of probabilistic intervals of extended probabilistic values in the EIPRDB relations. Figure 1 illustrates the 
extension of EIPRDB in comparison with the CRDB, other T-2PRDB models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.2 Efficiency of EIPRDB in computing and manipulating data   
As we have known, in CRDB model, the computing complexity of relational algebraic operations is O(n) for  the 

selection and projection on a relation having n tuples and O(nm) for the Cartesian product, join, intersection, union, 
and difference on two relations having n and m tuples. 

CRDB Extending with single 
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l   
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Figure 1. Extension of EIPRDB   
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In ET-2PRDB models, such as the model in [16], since each relational attribute is represented by a probability 
distribution function of a set of values, the computing complexity of relational algebraic operations is O(kn) for the 
selection and projection on a relation having n tuples and O(knm) for the Cartesian product, join, intersection, union, 
and difference on two relations having n and m tuples, where k is the cardinality of the domain of the distribution 
function.  

In EIPRDB, UIRDB and IPRDB models, since each relational attribute is represented by a list of some values or 
data associated with probability intervals (i.e., an extended probabilistic value or a probabilistic value), the 
computation and manipulation on the EIPRDB, UIRDB, and IPRDB data models are more effective than those on 
the T-2PRDB data models in [17] and [18], where the relational attribute value is the probability distribution function 
pairs of a set of values.  

The computing complexity of EIPRDB algebraic operations is a polynomial under the size of probabilistic 
relations, and it is as effective as the computing complexity of CRDB algebraic operations. Indeed, regarding the 
selection operation, since the computation time that a tuple holds or does not hold a selection condition is bounded 
above by some constant (Definition 14 and 15), then the cost for the selection of each tuple in an EIPRDB relation 
(Definition 16) also is some constant or O(1). Thus, the computing time complexity of the selection operation on an 
EIPRDB relation with n tuples is O(n). With the projection, from Definition 17, it is easy to see that the time for the 
probabilistic combination of the duplicate value tuples under a probabilistic disjunction strategy is a constant. Hence, 
the computing complexity of the projection on an EIPRDB relation having n tuples is O(n). Similarly, the computing 
time complexity of Cartesian product, join, intersection, union, and difference operations on two EIPRDB relations 
having n and m tuples is O(nm).  

From the discussions above, we can say that the performance of the EIPRDB model in computing and 
manipulating uncertain and imprecise information is good and can be applied in practice.    

6 Conclusions 
We have proposed a new probabilistic relational database model, named EIPRDB, that extends the CRDB model 

with interval probability set-valued attributes for uncertain information. A defined EIPRDB relation includes tuples 
whose attributes may take an extended probabilistic value to represent uncertainty and imprecision of information of 
objects in the real world. The fundamental concepts of EIPRDB such as the relational schema, probabilistic functional 
dependency, key and probabilistic database have been defined as the extensions of those of CRDB with interval 
probability set-valued attributes and tuples. The EIPRDB algebra has been built using the probabilistic interpretation 
of binary relations on sets, probabilistic combination strategies, and conjunction, disjunction, difference operations 
of extended probabilistic values. Basic properties of EIPRDB algebra have been proposed and proven formally and 
coherently. The EIPRDB model is consistent with the CRDB model and can express, manipulate, and deal with 
effectively uncertain and imprecise data.   

Towards applying EIPRDB model, we will build a management system for EIPRDB with the familiar querying 
and manipulating language like SQL that is able to represent and handle uncertain and imprecise information in the 
real world. To build the management system for EIPRDB, a data type for extended probabilistic values will be 
defined, then a compiler will be developed to compile the EIPRDB algebraic language (i.e., probabilistic relational 
algebraic operations) to probabilistic relational queries and manipulations in SQL.  
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