Prediction Model for Product Stock Procurement Using the Naive Bayes Method
DOI:
https://doi.org/10.58776/ijitcsa.v3i1.172Keywords:
predictions, spare parts, restock recommendations, naive bayesAbstract
Product sales circulation and product stock repurchase play a strategic role in meeting customer needs and increasing a company's profits. PT Rotaryana Engineering as a company that provides spare parts for electronic kitchen products in various brands is experiencing rapid dynamics in the sales of its various products. Therefore, a decision-making system is needed regarding spare parts stock policies that will support increased sales and customer satisfaction for the company. This research will model a product stock procurement prediction system using the Naive Bayes method. Sales data for one year will be used to categorize the availability of each product, namely the available category and the not available category. Furthermore, calculations using the Naive Bayes method produce likelihood probability values for each product item which are used to predict and recommend procurement of spare parts stock. This information can be used as a basis for determining priorities for procuring stock of the most popular goods and reducing stock of less popular goods so that the circulation of the company's product stock becomes more efficient and effective.
References
PT Rotaryana Engineering, ‘Home - Rotaryana Engineering’. Accessed: Dec. 15, 2024. [Online]. Available: https://rotaryana-engineering.com/
Jiawei Han, Jian Pei, and Hanghang Tong, Data Mining: Concepts and Techniques. United State: Elsevier Inc, 2023. Accessed: Dec. 15, 2024. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=NR1oEAAAQBAJ&oi=fnd&pg=PP1&dq=Han,+J.,+Pei,+J.,+%26+Kamber,+M.+(2011).+Data+Mining:+Concepts+and+Techniques.+3rd+Edition.+Morgan+Kaufmann+Publishers&ots=_N4GOFsisX&sig=gfsomYdDyPjahFRFypyneupLHfs&redir_esc=y#v=onepage&q&f=false
I. H. Witten Eibe Frank Mark A Hall ELSEVIER AMSTERDAM, L. New York, S. Diego, and M. Kaufmann, Data Mining Practical Machine Learning Tools and Techniques, 3rd ed. Elsevier.
D. A. Hamidah, R. Salkiawati, and R. Sari, ‘Analisis Sentimen Ulasan Customer Kopi TMLST Menggunakan Algoritma Naïve Bayes’, Journal of Students‘ Research in Computer Science, vol. 5, no. 1, pp. 27–40, May 2024, doi: 10.31599/mrm89y71.
I. Alkarim, ‘Sistem Pengendalian Ketersediaan Onderdil Traktor Dengan Teknik Buffer Stock Dan Reorder Point (Rop) Di Bangunan Agen Tanjung Karang (Studi Kasus CV. Karya Hidup Sentosa Lampung)’, Teknologipintar.org, vol. 2, no. 9, pp. 2022–2023, 2022.
S. D. C. Sinamon, ‘Rancangan Aplikasi Stock Sparepart Alat Berat Menggunakan Metode Fifo Studi Kasus CV Bumi Waras Bandar Lampung’, Teknologipintar.org, vol. 2, no. 4, pp. 2022–2023, 2022.
S. P. Sarmah and U. C. Moharana, ‘Spare Parts Inventory Management Literature and Direction Towards the Use of Data Mining Technique: A Review’, https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-3232-3.ch028, pp. 534–558, Jan. 2018, doi: 10.4018/978-1-5225-3232-3.CH028.
P. W. Putra, D. Irawan, A. T. Martadinata, and A. Heryati, ‘Sistem Prediksi Persediaan Barang di Mini Market Mars Menggunakan Algoritma Naive Bayes Classifier dengan Pemrograman Phyton’, Davit Irawan, vol. 7, no. 2, p. 148, 2022.
David L. Olson and Dursun Delen, Advanced Data Mining Techniques. Verlag Berlin: Springer, 2008. Accessed: Dec. 15, 2024. [Online]. Available: https://books.google.co.id/books?hl=id&lr=&id=2vb-LZEn8uUC&oi=fnd&pg=PA8&dq=Olson,+D.+L.,+%26+Delen,+D.+(2019).+Advanced+Data+Mining+Techniques.+Springer,+New+York&ots=zY4_Z33PmO&sig=jhL1ysvy28wAJ76uDysKocz0rr0&redir_esc=y#v=onepage&q&f=false
K. P. Aronis, I. Magou, R. Dekker, and G. Tagaras, ‘Inventory control of spare parts using a Bayesian approach: A case study’, Eur J Oper Res, vol. 154, no. 3, pp. 730–739, May 2004, doi: 10.1016/s0377-2217(02)00837-8.
R. A. P. Jayendran, P. Keikhosrokiani, and S. L. Chui, ‘Inventory Classification and Management System Using Machine Learning and Analytical Dashboard: A Case Study of a Manufacturing Industry’, https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/979-8-3693-1210-0.ch012, pp. 299–318, Jan. 2024, doi: 10.4018/979-8-3693-1210-0.CH012.
P. KumarBala, ‘An inventory replenishment model under purchase dependency in retail sale.’, International Journal of Computers and Applications, vol. 37, no. 10, pp. 43–48, Jan. 2012, doi: 10.5120/4648-6722.
P. Suwignjo, L. Panjaitan, A. Raecky Baihaqy, and A. Rusdiansyah, ‘Predictive Analytics to Improve Inventory Performance: A Case Study of an FMCG Company’, OPERATIONS AND SUPPLY CHAIN MANAGEMENT, vol. 16, no. 2, pp. 293–310, 2023.
D. Kurniawan, M. Sahata Sipayung, R. Ismayanti, M. Rivani Ibrahim, Y. Bintan, and S. Aulia Miranda, ‘Optimalisasi Strategi Pemenuhan Persediaan Stok Barang Menggunakan Algoritma Frequent Pattern Growth’, METIK JURNAL, vol. 6, no. 2, pp. 104–114, Dec. 2022, doi: 10.47002/metik.v6i2.387.
A. Azis and Sutisna, ‘Penerapan Data Mining untuk Menentukan Ketersediaan Stok Barang Berdasarkan Permintaan Konsumen di PT Indonesia Thai Summit Plastech Menggunakan K-Means Clustering’, Jurnal Indonesia : Manajemen Informatika dan Komunikasi, vol. 5, no. 3, pp. 3099–3106, Sep. 2024, doi: 10.35870/JIMIK.V5I3.982.
P. Kumar Bala, ‘An Inventory Replenishment Model under Purchase Dependency in Retail Sale’, 2012.
R. Srikant and R. Agrawal, ‘Mining Sequential Patterns: Generalizations and Performance Improvements’, San Jose.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rafika Sari, Muhammad Ashardi

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.