Sentiment Analysis of the Use of Digital Banking Service Applications On Google Play Store Reviews Using Naïve Bayes Method

Authors

  • Amalia Nur Soliha Bhayangkara Jakarta Raya University
  • Tb Ai Munandar Bhayangkara Jakarta Raya University
  • Muhammad Yasir Bhayangkara Jakarta Raya University

DOI:

https://doi.org/10.58776/ijitcsa.v1i3.40

Keywords:

Sentiment Analysis, Digital Banking Service Applications, Reviews, Naïve Bayes, Google Play Store

Abstract

The development of the financial system is characterized by the emergence of digital banking service applications that are widely circulated and can be accessed for free. With so many applications, users often feel confused in choosing which applications are safe to use. Before downloading an application on the Google Play Store, users will usually look at ratings and reviews first. However, the title of the best application cannot be pinned if only seen from the rating and number of downloads. This research was conducted to analyze sentiment on user reviews of digital banking service applications on the Google Play Store using the NBC (Naïve Bayes Classifier) method. Research using the NBC algorithm produced an accuracy value of 81% on the classification of Allo Bank reviews and 78% on the classification of Line Bank reviews

References

R. I. T. Linggadjaya, B. Sitio, and P. Situmorang, “Transformasi Digital Pt Bank Jago Tbk dari Bank Konvensional menjadi Bank Digital,” Int. J. Digit. Entrep. Bus., vol. 3, no. 1, pp. 9–22, Feb. 2022, doi: 10.52238/ideb.v3i1.76.

Y. Yuliana, P. Paradise, and K. Kusrini, “Sistem Pakar Diagnosa Penyakit Ispa Menggunakan Metode Naive Bayes Classifier Berbasis Web,” CSRID (Computer Sci. Res. Its Dev. Journal), vol. 10, no. 3, p. 127, Mar. 2021, doi: 10.22303/csrid.10.3.2018.127-138.

M. M. Saritas and A. Yasar, “International Journal of Intelligent Systems and Applications in Engineering Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification,” Orig. Res. Pap. Int. J. Intell. Syst. Appl. Eng. IJISAE, vol. 7, no. 2, pp. 88–91, 2019, doi: 10.1039/b000000x.

M. Abbas, K. Ali, M. Saleem, and A. Jamali, “Multinomial Naive Bayes Classification Model for Sentiment Analysis Study about symmetric and Asymmetric algorithms View project Overview of China View project Multinomial Naive Bayes Classification Model for Sentiment Analysis,” IJCSNS Int. J. Comput. Sci. Netw. Secur., vol. 19, no. 3, p. 62, 2019, doi: 10.13140/RG.2.2.30021.40169.

N. S. Wardani, A. Prahutama, and P. Kartikasari, “ANALISIS SENTIMEN PEMINDAHAN IBU KOTA NEGARA DENGAN KLASIFIKASI NAÏVE BAYES UNTUK MODEL BERNOULLI DAN MULTINOMIAL”, [Online]. Available: https://ejournal3.undip.ac.id/index.php/gaussian/

L. Cataldi, L. Tiberi, and G. Costa, “Estimation of MCS intensity for Italy from high quality accelerometric data, using GMICEs and Gaussian Naïve Bayes Classifiers,” Bull. Earthq. Eng., vol. 19, no. 6, pp. 2325–2342, Apr. 2021, doi: 10.1007/s10518-021-01064-6.

A. P. Giovani, A. Ardiansyah, T. Haryanti, L. Kurniawati, and W. Gata, “ANALISIS SENTIMEN APLIKASI RUANG GURU DI TWITTER MENGGUNAKAN ALGORITMA KLASIFIKASI,” J. Teknoinfo, vol. 14, no. 2, p. 115, Jul. 2020, doi: 10.33365/jti.v14i2.679.

D. Darwis, N. Siskawati, and Z. Abidin, “Penerapan Algoritma Naive Bayes untuk Analisis Sentimen Review Data Twitter BMKG Nasional,” vol. 15, no. 1.

F. V. Sari and A. Wibowo, “ANALISIS SENTIMEN PELANGGAN TOKO ONLINE JD.ID MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER BERBASIS KONVERSI IKON EMOSI,” J.SIMETRIS, vol. 10, no. 2, Jan. 2019.

E. Indrayuni, A. Nurhadi, and D. A. Kristiyanti, “Implementasi Algoritma Naive Bayes, Support Vector Machine, dan K-Nearest Neighbors untuk Analisa Sentimen Aplikasi Halodoc,” Fakt. Exacta, vol. 14, no. 2, p. 64, Aug. 2021, doi: 10.30998/faktorexacta.v14i2.9697.

V. A. Permadi, “Analisis Sentimen Menggunakan Algritma Naïve Bayes Terhadap Review Restoran di Singapura 141.” [Online]. Available: https://www.kaggle.com/hj5992/restaurantreviews

D. S. Utami and A. Erfina, “Analisis Sentimen Objek Wisata Bali Di Google Maps Menggunakan Algoritma Naive Bayes,” 2022.

A. Sri Widagdo, B. W. Soedijono A, and A. Nasiri, “Analisis Tingkat Kepopuleran E-Commerce Di Indonesia Berdasarkan Sentimen Sosial Media Menggunakan Metode Naïve Bayes,” 2020.

E. Indrayuni, “Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes,” vol. VII, no. 1, 2019.

A. I. Tanggraeni and M. N. N. Sitokdana, “Analisis Sentimen Aplikasi E-Government Pada Google Play Menggunakan Algoritma Naïve Bayes,” vol. 9, no. 2, pp. 785–795, 2022.

C. H. Yutika, A. Adiwijaya, and S. Al Faraby, “Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes,” J. MEDIA Inform. BUDIDARMA, vol. 5, no. 2, p. 422, Apr. 2021, doi: 10.30865/mib.v5i2.2845.

N. Herlinawati, Y. Yuliani, S. Faizah, W. Gata, and Samudi, “ANALISIS SENTIMEN ZOOM CLOUD MEETINGS DI PLAY STORE MENGGUNAKAN NAÏVE BAYES DAN SUPPORT VECTOR MACHINE,” 2020.

Samsir, Ambiyar, U. Verawardina, F. Edi, and R. Watrianthos, “Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19 Menggunakan Metode Naïve Bayes,” J. Media Inform. Budidarma, vol. 5, no. 1, pp. 157–163, Jan. 2021, Accessed: May 25, 2023. [Online]. Available: http://stmik-budidarma.ac.id/ejurnal/index.php/mib/article/view/2580/1870

E. Y. Hidayat and M. A. Rizqi, “Klasifikasi Dokumen Berita Menggunakan Algoritma Enhanced Confix Stripping Stemmer dan Naïve Bayes Classifier,” J. Nas. Teknol. dan Sist. Inf., vol. 6, no. 2, pp. 90–99, Aug. 2020, doi: 10.25077/teknosi.v6i2.2020.90-99.

C. F. Hasri and D. Alita, “PENERAPAN METODE NAÏVE BAYES CLASSIFIER DAN SUPPORT VECTOR MACHINE PADA ANALISIS SENTIMEN TERHADAP DAMPAK VIRUS CORONA DI TWITTER,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, pp. 145–160, 2022, [Online]. Available: http://jim.teknokrat.ac.id/index.php/informatika

E. D. N. Sari and Irhamah, “Analisis Sentimen Nasabah Pada Layanan Perbankan Menggunakan Metode Regresi Logistik Biner, Naïve Bayes Classifier (NBC), dan Support Vector Machine (SVM),” 2019.

M. K. Anam, B. N. Pikir, and M. B. Firdaus, “Penerapan Na ̈ıve Bayes Classifier, K-Nearest Neighbor (KNN) dan Decision Tree untuk Menganalisis Sentimen pada Interaksi Netizen danPemeritah,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 1, pp. 139–150, Nov. 2021, doi: 10.30812/matrik.v21i1.1092.

U. Kiftiyani, N. Yudistira, and N. Sunan Kalijaga Yogyakarta, “Perangkingan Dokumen Berbahasa Arab Berdasarkan Query dengan Metode Klasifikasi Naïve Bayes dan K-Nearest Neighbor Arabic Document Ranking based on Query using Naïve Bayes and K-Nearest Neighbor Classification Method,” 2020.

H. Putri, A. I. Purnamasari, A. R. Dikananda, O. Nurdiawan, and S. Anwar, “Penerima Manfaat Bantuan Non Tunai Kartu Keluarga Sejahtera Menggunakan Metode NAÏVE BAYES dan KNN,” Build. Informatics, Technol. Sci., vol. 3, no. 3, pp. 331–337, Dec. 2021, doi: 10.47065/bits.v3i3.1093.

J. A. Septian, T. M. Fahrudin, and A. Nugroho, “Analisis Sentimen Pengguna Twitter Terhadap Polemik Persepakbolaan Indonesia Menggunakan Pembobotan TF-IDF dan K-Nearest Neighbor.” [Online]. Available: https://t.co/9WloaWpfD5

A. Riyani, M. N. Zidny, and A. Burhanuddin, “Penerapan Cosine Similarity dan Pembobotan TF-IDF untuk Mendeteksi Kemiripan Dokumen,” 2019.

D. Normawati and S. A. Prayogi, “Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter,” 2021.

N. Salmi and Z. Rustam, “Naïve Bayes Classifier Models for Predicting the Colon Cancer,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Jul. 2019. doi: 10.1088/1757-899X/546/5/052068.

N. Amalina, “Uji Akurasi Aplikasi Augmented Reality Pembelajaran Huruf Alfabet Bahasa Isyarat Indonesia (BISINDO) pada Vuforia Menggunakan Confussion Matrix,” Universitas Islam Negeri Maulana Malik Ibrahim, Malang, 2019.

M. U. Albab, Y. Karuniawati P, and M. N. Fawaiq, “Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic,” vol. 20, no. 2, pp. 1–10, 2023, doi: 10.26623/transformatika.v20i2.5374.

Downloads

Published

10-09-2023

How to Cite

Amalia Nur Soliha, Tb Ai Munandar, & Muhammad Yasir. (2023). Sentiment Analysis of the Use of Digital Banking Service Applications On Google Play Store Reviews Using Naïve Bayes Method. International Journal of Information Technology and Computer Science Applications, 1(3), 129–137. https://doi.org/10.58776/ijitcsa.v1i3.40