Utilizing Linear Regression for Predicting Sales of Top-Performing Products

Authors

  • matthew Pratama Universitas Bhayangkara Jakarta Raya

DOI:

https://doi.org/10.58776/ijitcsa.v1i3.92

Keywords:

Prediction, Linear Regression, MAPE, Medical Devices

Abstract

PT Ajidarma Delta Medika is a company engaged in the sale of medical devices in the city of Bekasi. This company markets a variety of medical device products. Judging from the large number of consumer requests for medical device products based on sales data for the last 3 years, predictions are needed for the best-selling product sales, in order to facilitate the company in planning the supply of stock. To find out the best-selling medical device product sales, data prediction techniques are used with the Linear Regression algorithm. By using the Linear Regression algorithm, the results are obtained to predict the best-selling sales of several products sold at PT Ajidarma Delta Medika. This research produces an accuracy value with the MAPE formula for predicting the best-selling product sales of 14.2%. This shows that the linear regression method is good at predicting sales of medical devices in the following year.

References

F. Petropoulos et al., “Forecasting: theory and practice,” Int. J. Forecast., vol. 38, no. 3, pp. 705–871, 2022, doi: 10.1016/j.ijforecast.2021.11.001.

I. Yolanda and H. Fahmi, “Penerapan Data Mining Untuk Prediksi Penjualan Produk Roti Terlaris Pada PT . Nippon Indosari Corpindo Tbk Menggunakan Metode K-Nearest Neighbor,” vol. 3, no. 3, pp. 9–15, 2021.

J. Suntoro, 22-DATA MINING Algoritma dan Implementasi Menggunakan Bahasa Pemrograman PHP, vol. 9, no. 9. 2019.

M. Galih, P. D. Atika, and Mukhlis, “Prediksi Penjualan Menggunakan Algoritma Regresi Linear Di Koperasi Karyawan ‘Usaha Bersama,’” J. Inform. Inf. Secur., vol. 3, no. 2, pp. 193–202, 2023, doi: 10.31599/jiforty.v3i2.1354.

F. H. Hamdanah and D. Fitrianah, “Analisis Performansi Algoritma Linear Regression dengan Generalized Linear Model untuk Prediksi Penjualan pada Usaha Mikra, Kecil, dan Menengah,” J. Nas. Pendidik. Tek. Inform., vol. 10, no. 1, p. 23, 2021, doi: 10.23887/janapati.v10i1.31035.

I. A. Nikmatun and I. Waspada, “Implementasi Data Mining untuk Klasifikasi Masa Studi Mahasiswa Menggunakan Algoritma K-Nearest Neighbor,” J. SIMETRIS, vol. 10, no. 2, pp. 421–432, 2019.

P. S. T. Informatika and U. I. Majapahit, “Pemanfaatan Knowledge Data Discovery(KDD) Pada Pola Permainan Atlet Bulutangkis,” Explor. IT J. Keilmuan dan Apl. Tek. Inform., vol. 11, no. 1, pp. 1–6, 2019, doi: 10.35891/explorit.v11i1.1467.

M. Sholeh, E. K. Nurnawati, and U. Lestari, “Penerapan Data Mining dengan Metode Regresi Linear untuk Memprediksi Data Nilai Hasil Ujian Menggunakan RapidMiner,” JISKA (Jurnal Inform. Sunan Kalijaga), vol. 8, no. 1, pp. 10–21, 2023, doi: 10.14421/jiska.2023.8.1.10-21.

U. Ependi and A. Putra, “Solusi Prediksi Persediaan Barang dengan Menggunakan Algoritma Apriori (Studi Kasus: Regional Part Depo Auto 2000 Palembang),” J. Edukasi dan Penelit. Inform., vol. 5, no. 2, p. 139, 2019, doi: 10.26418/jp.v5i2.32648.

R. K. Rainer, B. Prince, and C. Cegielski, Introduction to Information Systems, 5th Edition: Fifth Edition, 5th ed., vol. 12. 2014.

N. Nafi’iyah, “Prediksi Jumlah Penjualan pada Toko Makmur Jaya Elektronik dengan Regresi Linier,” Res. Comput. Inf. Syst. Technol. Manag., vol. 2, no. 2, p. 47, 2019, doi: 10.25273/research.v2i02.5143.

I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020, doi: 10.33633/joins.v5i2.3900.

Downloads

Published

10-09-2023

How to Cite

Pratama, matthew. (2023). Utilizing Linear Regression for Predicting Sales of Top-Performing Products. International Journal of Information Technology and Computer Science Applications, 1(3), 174–180. https://doi.org/10.58776/ijitcsa.v1i3.92