Klasifikasi Postingan Pengguna Facebook Untuk Deteksi Phising Menggunakan Naive Bayes

Penulis

  • Muhammad Fahmi Fadhillah Lecturer
  • Fikki Arsyi Nur Fadlillah

DOI:

https://doi.org/10.58776/jriti.v1i1.53

Kata Kunci:

Classification, User Posting, Phishing Detection, Naïve Bayes

Abstrak

Phishing is a digital fraud that is commonly carried out by cybercriminals with the aim of taking user's personal information data by manipulating it. Facebook is a very popular social media platform in the world so it can be a wet place for phishing criminals. In this research, we built a Classification model to identify and prevent phishing attempts on Facebook posts. The dataset used in this study was obtained from Facebook user posts collected. Data processing is done by preprocessing the post text, including removing punctuation marks and words that are not important. The method used is Naïve Bayes to classify posts into phishing or not phishing categories. The Naïve Bayes method is used because of its ability to classify data with a good level of accuracy. This shows that the features selected in this study can be a strong indicator for detecting phishing on Facebook user posts. The results of the study show that Naïve Bayes can be an effective solution for phishing detection on Facebook user posts. In addition, the results of this research can provide valuable insight into the common characteristics of phishing posts on Facebook. With an accuracy value of 99.01%, it is hoped that this research can help increase awareness and security of Facebook users against phishing posts.

Referensi

Moh Yunus, Dwi Widiastuti, Hasma Rasjid dan Yulia Chalri. (2019). Metode Klasifikasi Untuk Deteksi Uniform Resource Locator (URL) Berdasarkan Jenis Serangan Menggunakan Algoritma Naive Bayes, C4.5 dan K-Nearest Neighbor

Agus Fatkhurohman , Eli Pujastuti. (2019). Penerapan Algoritma Naïve Bayes Classifier Untuk Meningkatkan Keamanan Data Dari Website Phising

Jimmy H. Moedjahedy , Arief Setyanto , Komang Aryasa. (2020). ANALISIS PERBANDINGAN KORELASI SPEARMAN DAN MAXIMAL INFORMATION COEFFICIENT DALAM SELEKSI FITUR WEBSITE PHISHING MENGGUNAKAN ALGORITMA MACHINE LEARNING

Roni Anagora, Rudini, Rohmat Taufiq, Ahmad Dedi Jubaedi, Rio Wirawan, Arman Syah Putra. (2022). The Classification of Phishing Websites using Naive Bayes Classifier Algorithm

Ahmad Turmudi Zy, Agung Nugroho, Ahmad Rivaldi, Irfan Afriantoro. (2022). Analisis Sentimen Terhadap Pembobolan Data pada Twitter dengan Algoritma Naive Bayes

Pungkas Subarkah, Ali Nur Ikhsan. (2021). IDENTIFIKASI WEBSITE PHISHING MENGGUNAKAN ALGORITMA CLASSIFICATION AND REGRESSION TREES (CART)

Farida,Ali Mustopa.(2023).Perbandingan Logistic Regression dan Random Forest menggunakan Correlation-based Feature Selection untuk Deteksi Website Phishing

Anggit Ferdita Nugraha, Rifda Faticha, Alfa Aziza, Yoga Pristyanto.(2022). Penerapan metode Stacking dan Random Forest untuk Meningkatkan Kinerja Klasifikasi pada Proses Deteksi Web Phishing

Sunardi , Abdul Fadlil , Nur Makkie Perdana Kusuma .(2022). Implementasi Data Mining dengan Algoritma Naïve Bayes untuk Profiling Korban Penipuan Online di Indonesia

Agung Susilo Yuda Irawan, Nono Heryana, Hopi Siti Hopipah, Dyas Rahma. (2021). Identifikasi Website Phishing dengan Perbandingan Algoritma Klasifikasi

YUSUP MIFTAHUDDIN, MOHAMAD MUQIIT FATURRAHMAN .(2022). Penerapan Data Standardization dan Multilayer Perceptron pada Identifikasi Website Phishing

Michael Jonathan, Silvia Rostianingsih, Henry Novianus Palit.(2020). Pengaruh Feature Selection terhadap Kinerja C5.0, XGBoost, dan Random Forest dalam Mengklasifikasikan Website Phishing

APWG. (2019). Phising Activity Report Quarter 4

Fayruz Rahma, Azmiardhy Zulkifli Farmadiansyah, Ahmad Fathan Hidayatullah. (2019).Deteksi Surel Spam dan Non Spam Bahasa Indonesia Menggunakan Metode Naïve Bayes

Nabila Bianca Putri, Arie Wahyu Wijayanto.(2019). Analisis Komparasi Algoritma Klasifikasi Data Mining Dalam Klasifikasi Website Phishing

Diterbitkan

31-08-2023

Cara Mengutip

Muhammad Fahmi, & Nur Fadlillah, F. A. (2023). Klasifikasi Postingan Pengguna Facebook Untuk Deteksi Phising Menggunakan Naive Bayes. Jurnal Riset Informatika Dan Teknologi Informasi, 1(1), 25–29. https://doi.org/10.58776/jriti.v1i1.53

Terbitan

Bagian

Volume 1 Nomor 1, Agustus - November 2023