The MAPE Analysis of Arima (p,d,q) on LQ45 Stock Price to Determine Training Data Period
DOI:
https://doi.org/10.58776/ijitcsa.v2i3.168Keywords:
ARIMA(p,d,q), MAPE Analysis, Prediction Residual Test, Parameter EstimationAbstract
Most of the research using the Arima (p,d,q) focused on the accuracy of prediction results. Unlike other research, this work examines the training data period suitable for modeling ARIMA (p,d,q) in stock prices. Due to the volatile movement of stocks, the number of training data is assumed to affect the LQ45 prediction results. This research used five kinds of training data, including daily data for up to 5 years. With these five types of data series, the Arima (p,d,q) was made for LQ45 stocks. The prediction was conducted for two months after obtaining the model 5 data series of LQ45 stocks. Two months of data were used for January and February 2021 prediction test data. The results of this prediction were compared with the test data to produce the MAPE value. Based on the observations and calculation results, the most suitable stock to use the Arima (p,d,q) was ASII. In 5 years, the stocks produced the lowest MAPE value of 0.05%. Relatively stable LQ45 stocks with no change in the Arima (p,d,q) using four consecutive data series were ACES, CTRA, INTP, MIKA, and TLKM. Based on the MAPE value analysis performed in this study, we concluded that the best period to use the Arima (p,d,q) for LQ45 stocks is two years, with a median error rate of only 6.0091%.
References
A. A. Dahlan et al, Ensiklopedia Hukum Islam, Cetakan pertama, Jakarta: PT Ichtiar Baru Van Hoeve, 1996.
A. R. Brealey, C. Myers and J. M. Alan, Fundamentals of Coorporate Finance 5th ed, McGraw-Hill, 2007.
C. P. Permata and M. A. Ghoni, "Peranan Pasar Modal dalam Perekonomian Negara Indonesia," Jurnal AkunStie 5 (2), pp. 56-58, 2009.
J. J. Murphy, Technical Analysis Financial Market A Comprehensive Guide to Trading Methods and Applications, New York: New York Institute of Finance, 1999.
Muthahharah, "Peramalan Indeks Saham Syariah Indonesia (ISSI) menggunakan Metode Autoregressive Integrated Moving Average (ARIMA)," Jurnal Matematika dan Statistika serta Aplikasinya Vol. 7 No. 2 Ed. Juli-Des. 2019, pp. 1-8, 2019.
I. Aksan and K. Nurfadilah, "Aplikasi Metode Arima Box-Jenkins untuk Meramalkan Penggunaan Harian Data Seluler," JOMTA Journal of Mathematics : Theory and Applications Vol. 2, No. 1, 2020, P-ISSN 2685-9653 e-ISSN 2722-2705, pp. 5-10, 2020.
M. Buchori and T. Sukmono, "Peramalan Produksi Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) di PT. XYZ," Prozima Vol. 2 No. 1, Juni 2018, pp. 27-33, 2018.
S. C. Ningsih and P. Jana, "Pemodelan Penderita HIV/AIDS dengan Metode ARIMA," Jurnal Mercumatika : Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 3, No. 1 , Oktober 2018, pp. 23-28, 2018.
R. J. Djami and S. J. Latupeirissa, "Forecasting Gold Prices in Indonesia 2014-2019 Using ARIMA Box-Jenkins Method," Variance Journal of Statistics and Its Applications Volume 2 Nomor 2, Desember 2020, p-ISSN: 2685-8738 e-ISSN: 2685-872X, pp. 53-62, 2020.
T. Rahmawati, L. Sudarmana and A. Priyanto, "Penerapan Metode ARIMA Box-Jenkins untuk Peramalan Konsumsi Listrik," POLITEKNOSAINS, Vol. XIX, No. 1, Maret 2020 ISSN : 1829-6181, pp. 6-11, 2020.
N. Salwa, N. Tatsara, R. Amalia and A. F. Zohra, "Peramalan Harga Bitcoin Menggunakan Metode ARIMA (Autoregressive Integrated Moving Average)," Jurnal of Data Analysis Vol. 1, No.1 , Juni 2018, pp. 21-31, 2018.
L. Ainiyah and M. Bansori, "Prediksi Jumlah Kasus Covid-19 Menggunakan Metode Autoregressive Integrated Moving Average (ARIMA) (Studi kasus Kabupaten Sidoarjo)," Jurnal Sains Dasar Vol. 10, No. 2 Oktober 2021, pp. 62-68, 2021.
S. S. Wulandari, S. and S. Yurinanda, "Penerapan Metode ARIMA dalam Memprediksi Fluktuasi Harga Saham PT Bank Central Asia Tbk," Buana Matematika : Jurnal Ilmiah Matematika dan Pendidikan Matematika Vol 11 No 1 (2021) p-ISSN : 2088-3021 e-ISSN : 2598-8077 , pp. 53-68, 2021.
D. W. Lestari and R. Yotenka, "Aplikasi Metode Box-Jenkins (ARIMA) untuk Meramalkan Harga Komoditas Cabai Merah," Jurnal Khazanah Volume 14 No. 1, Agustus 2022, E-ISSN 2745-8733 P-ISSN 1979-519X , pp. 31-37, 2022.
R. G. Santosa, A. R. Chrismanto, W. S. Raharjo and Y. Lukito, "LQ45 Stock Price Forecasting: A Comparison Study of Arima(p,d,q) and Holt-Winter Method," International Journal of Information Technology and Computer Science Applications (IJITCSA), vol. 2, no. 2, pp. 115-129, 2024.
Siagian, Dergibson and Sugiarto, Metode Statistik untuk Bisnis dan Ekonomi, Jakarta: PT Gramedia Pustaka Utama ISBN 979-655-924-2, 2002.
D. C. Montgomery, C. L. Jennings and M. Kulahci, Introduction Time Series Analysis & Forecasting, A John Wiley & Sons, Inc. Publication, 2008.
G. E. Box, G. M. Jenkins, G. C. Reinsel and G. M. Ljung, Time Series Analysis Forecasting and Control Fifth Edition, John Wiley & Sons, Inc., 2016.
R. J. Hyndman and G. Athanasopoulos, "Forecasting: Principles and Practice 2nd Edition," 2018. [Online]. Available: otexts.com/fpp2/. [Accessed 8 May 2018].
R. G. Santosa, A. R. Chrismanto and Y. Lukito, "Stocks Forecasting Exploration on LQ45 Index Using ARIMA(p,d,q) Model," JATIT (Journal of Theoretical and Applied Information Technology) Vol. 100, No. 13, July 2022, pp. 4839-4855, 2022.
M. J. Crawley, The R Book, John Wiley & Sons, Ltd, 2007.
R. A. Yaffee and M. McGee, Introduction to Time Series Analysis and Forecasting with Applications of SAS and SPSS, Academic Press Inc., 1999.
R. J. Hyndman and Y. Khandakar, "Automatoc Time Serie Forecasting : The forecast Package for R," Journal of Statistical Software July 2008 , Volume 27, Issue 3, pp. 1-22, 2008.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Raden Gunawan Santosa, Antonius Rachmat Chrismanto, Yuan Lukito, Willy Sudiarto Raharjo
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.