Agglomerative Spatial Clustering Analysis for Mapping Crime Risk Zone Clusters

Authors

  • Tb Ai Munandar Universitas Bhayangkara Jakarta Raya
  • Khairunnisa Fadhilla Ramdhania Universitas Bhayangkara Jakarta Raya

DOI:

https://doi.org/10.58776/ijitcsa.v3i2.197

Keywords:

spatial mapping, agglomerative clustering, crime risk zones, socio-economic analysis, crime prevention

Abstract

Public safety and order are crucial aspects of social and economic life, especially in densely populated urban areas. High crime rates can undermine the sense of security and quality of life within society. Therefore, a deep understanding of crime distribution patterns is essential for designing effective prevention strategies. This study aims to map crime risk zones in Indonesia using the Agglomerative Clustering method, by integrating socio-economic and demographic variables. This method was chosen for its ability to group data based on similarity of characteristics, making it easier to identify areas with high-risk levels. The results show the formation of four main clusters that reflect crime risk distribution in Indonesia. The first cluster includes several provinces with similar crime patterns, while the other clusters reflect significant differences in crime patterns, particularly in Jakarta, which has very distinct criminal characteristics. This mapping provides valuable insights for the planning of more efficient, data-driven crime prevention policies. The research is expected to provide a strong foundation for policymakers and law enforcement agencies to formulate more targeted strategies to combat crime in Indonesia.

Author Biography

Tb Ai Munandar, Universitas Bhayangkara Jakarta Raya

 

References

A. Rahmadanita, “Tren Penelitian Ketertiban Umum (Public Order): Sebuah Pendekatan Bibliometrik,” Jurnal Tatapamong, vol. 5, no. 1, pp. 81–100, Sep. 2023, doi: 10.33701/jurnaltatapamong.v5i1.3656.

N. E. Lelet, A. Laloma, and V. Londa, “Strategi Pemerintah Daerah Dalam Menjaga Keamanan Dan Ketertiban Masyarakat,” JAP: Jurnal Administrasi, vol. VIII, no. 113, pp. 99–106, 2022.

J. Mantiri and C. M. Siwi, “Community Participation in Public Peace and Order in Imandi Village, East Dumoga Subdistrict, Bolaang Mongondow Regency,” Society, vol. 8, no. 2, pp. 802–812, Dec. 2020, doi: 10.33019/society.v8i2.262.

L. Sugiharti, R. Purwono, M. A. Esquivias, and H. Rohmawati, “The Nexus between Crime Rates, Poverty, and Income Inequality: A Case Study of Indonesia,” Economies, vol. 11, no. 2, p. 62, Feb. 2023, doi: 10.3390/economies11020062.

Muh. Z. Ramadhoan, A. Amiruddin, and U. Ufran, “Crime Prevention Through an Environmental Design Approach in Reducing Crime Rates in Indonesia,” International Journal of Social Science Research and Review, vol. 7, no. 4, pp. 177–195, Apr. 2024, doi: 10.47814/ijssrr.v7i4.2060.

O. E. Jonathan, A. J. Olusola, T. C. A. Bernadin, and T. M. Inoussa, “Impacts of Crime on Socio-Economic Development,” Mediterr J Soc Sci, vol. 12, no. 5, pp. 71–81, Sep. 2021, doi: 10.36941/mjss-2021-0045.

S. B. Lim, C. K. Yong, J. A. Malek, M. F. M. Jali, A. H. Awang, and Z. Tahir, “Effectiveness of Fear and Crime Prevention Strategy for Sustainability of Safe City,” Sustainability, vol. 12, no. 24, p. 10593, Dec. 2020, doi: 10.3390/su122410593.

S. Geason and P. R. Wilson, Crime Prevention : Theory and Practice. Canberra: Australian Institute of Criminology, 1988.

J. K. Mogaraju, “Agglomerative and Divisive hierarchical cluster analysis of groundwater quality variables using opensource tools over YSR district, AP, India,” Journal of Scientific Research, vol. 66, no. 04, pp. 15–20, 2022, doi: 10.37398/jsr.2022.660403.

C. Li et al., “Agglomerative Clustering with Threshold Optimization via Extreme Value Theory,” Algorithms, vol. 15, no. 170, pp. 1–23, May 2022, doi: 10.3390/a15050170.

H. Ratna, A. Putri, A. Achmad, R. Fernandes, and A. Iriany, “CREDIT CUSTOMER SEGMENTATION WITH HIERARCHICAL CLUSTERING AT VARIOUS DISTANCES,” J Theor Appl Inf Technol, vol. 31, no. 2, 2023, [Online]. Available: www.jatit.org

F. Jáñez-Martino, R. Alaiz-Rodríguez, V. González-Castro, E. Fidalgo, and E. Alegre, “Classifying spam emails using agglomerative hierarchical clustering and a topic-based approach,” Appl Soft Comput, vol. 139, pp. 1–16, May 2023, doi: 10.1016/j.asoc.2023.110226.

C. H. Liu and T.-C. Hsu, “Using a Hierarchical Clustering Algorithm to Explore the Relationship Between Students’ Program Debugging and Learning Performance,” in Joint Proceedings of LAK 2024 Workshops, Kyoto, Mar. 2024, pp. 1–10.

I. T. Vlad, C. Diaz, P. Juan, and S. Chaudhuri, “Analysis and description of crimes in Mexico city using point pattern analysis within networks,” Ann GIS, vol. 29, no. 2, pp. 243–259, Apr. 2023, doi: 10.1080/19475683.2023.2166108.

S. K. Appiah, K. Wirekoh, E. N. Aidoo, S. D. Oduro, and Y. D. Arthur, “A model-based clustering of expectation–maximization and K -means algorithms in crime hotspot analysis,” Research in Mathematics, vol. 9, no. 1, pp. 1–12, Dec. 2022, doi: 10.1080/27684830.2022.2073662.

Amirusholihin, L. Rahadiantino, A. Nilasari, D. Y. Rakhmawati, and F. Fatoni, “How Population Density and Welfare Affect Crime Rates: A Study in East Java Province, Indonesia,” Revista de Gestão Social e Ambiental, vol. 18, no. 8, p. e06224, Apr. 2024, doi: 10.24857/rgsa.v18n8-028.

G. Veranita and M. H. Yudhistira, “The Effect of Density on Crime: Evidence from Indonesia,” Jurnal Perencanaan Pembangunan: The Indonesian Journal of Development Planning, vol. 6, no. 3, pp. 292–303, Dec. 2022, doi: 10.36574/jpp.v6i3.342.

I. I. Iliyasu, A. Abdullah, and M. H. Marzbali, “Urban Morphology And Crime Patterns In Urban Areas: A Review Of The Literature,” Malaysian Journal of Sustainable Environment, vol. 9, no. 1, pp. 213–242, Feb. 2022, doi: 10.24191/myse.v9i1.17301.

C. C. Onyeneke and A. H. Karam, “An Exploratory Study of Crime: Examining Lived Experiences of Crime through Socioeconomic, Demographic, and Physical Characteristics,” Urban Science, vol. 6, no. 43, pp. 1–17, Jun. 2022, doi: 10.3390/urbansci6030043.

A. Ahmad et al., “Criminological Insights: A Comprehensive Spatial Analysis of Crime Hot Spots of Property Offenses in Malaysia’s Urban Centers,” Forum Geografi, vol. 38, no. 1, pp. 94–109, Mar. 2024, doi: 10.23917/forgeo.v38i1.4306.

A. Lisowska-Kierepka, “How to analyse spatial distribution of crime? Crime risk indicator in an attempt to design an original method of spatial crime analysis,” Cities, vol. 120, no. (2022) 103403, pp. 1–5, Jan. 2022, doi: 10.1016/j.cities.2021.103403.

R. K. Gupta, “Crime Pattern & Prevention Through Urban Environmental Design Using GIS,” Journal of Global Resources, vol. 7, no. 2, p. 32, Jul. 2021, doi: 10.46587/JGR.2021.v07i02.004.

A. Pratama, M. D. Irawan, and S. D. Andriana, “Implementation of K-Means Clustering in Recognizing Crime Hotspots and Traffic Issues Through GIS,” Journal of Computer Networks, Architecture and High Performance Computing, vol. 6, no. 2, pp. 771–782, Apr. 2024, doi: 10.47709/cnahpc.v6i2.3771.

A. Porębski, “Application of Cluster Analysis in Research on the Spatial Dimension of Penalised Behaviour,” Acta Universitatis Lodziensis. Folia Iuridica, vol. 94, pp. 97–120, Mar. 2021, doi: 10.18778/0208-6069.94.06.

D. Olaniyan and J. Olaniyan, “A Crime Rate Prediction System For Ibadan-Oyo State Using K-Means Cluster,” 2021. [Online]. Available: www.bjacs.com.ng

R. M. F. Lubis, J.-P. Huang, P.-C. Wang, N. Damanik, A. C. Sitepu, and C. D. Simanullang, “K-Means and AHC Methods for Classifying Crime Victims by Indonesian Provinces: A Comparative Analysis,” Building of Informatics, Technology and Science (BITS), vol. 5, no. 1, pp. 295–307, Jun. 2023, doi: 10.47065/bits.v5i1.3630.

S. Umasare, S. Phirke, S. Thakur, and V. Kulkarni, “Crime Rate Analysis and Prediction Using K-Means,” 2022. [Online]. Available: www.ijrpr.com

C. X. Gao et al., “An overview of clustering methods with guidelines for application in mental health research,” Psychiatry Res, vol. 327, no. 115265, pp. 1–28, Sep. 2023, doi: 10.1016/j.psychres.2023.115265.

M. Ay, L. Özbakır, S. Kulluk, B. Gülmez, G. Öztürk, and S. Özer, “FC-Kmeans: Fixed-centered K-means algorithm,” Expert Syst Appl, vol. 211, p. 118656, Jan. 2023, doi: 10.1016/j.eswa.2022.118656.

C. Zhang, W. Huang, T. Niu, Z. Liu, G. Li, and D. Cao, “Review of Clustering Technology and Its Application in Coordinating Vehicle Subsystems,” Automotive Innovation, vol. 6, pp. 89–115, Jan. 2023, doi: 10.1007/s42154-022-00205-0.

M. Zhang, “Unsupervised Learning Algorithms in Big Data: An Overview,” in Proceedings of the 2022 5th International Conference on Humanities Education and Social Sciences (ICHESS 2022), Atlantis Press SARL, 2022, pp. 910–931. doi: 10.2991/978-2-494069-89-3_107.

M. Kossakov, A. Mukasheva, G. Balbayev, S. Seidazimov, D. Mukammejanova, and M. Sydybayeva, “Quantitative Comparison of Machine Learning Clustering Methods for Tuberculosis Data Analysis †,” Engineering Proceedings, vol. 60, no. 1, 2024, doi: 10.3390/engproc2024060020.

S. Pitafi, T. Anwar, and Z. Sharif, “A Taxonomy of Machine Learning Clustering Algorithms, Challenges, and Future Realms,” Applied Sciences, vol. 13, no. 6, pp. 1–18, Mar. 2023, doi: 10.3390/app13063529.

M. Vichi, C. Cavicchia, and P. J. F. Groenen, “Hierarchical Means Clustering,” J Classif, vol. 39, no. 3, pp. 553–577, Nov. 2022, doi: 10.1007/s00357-022-09419-7.

A. Gere, “Recommendations for validating hierarchical clustering in consumer sensory projects,” Curr Res Food Sci, vol. 6, no. (2023)100522, pp. 1–10, 2023, doi: 10.1016/j.crfs.2023.100522.

A. Hafeezallah, A. Al-Dhamari, and S. A. R. Abu-Bakar, “Motion segmentation using Ward’s hierarchical agglomerative clustering for crowd disaster risk mitigation,” International Journal of Disaster Risk Reduction, vol. 102, p. 104262, Feb. 2024, doi: 10.1016/j.ijdrr.2024.104262.

W. Wang and J. P. Koeln, “Hierarchical clustering of constrained dynamic systems using robust positively invariant sets,” Automatica, vol. 147, p. 110739, Jan. 2023, doi: 10.1016/j.automatica.2022.110739.

E. Burghardt, D. Sewell, and J. Cavanaugh, “Agglomerative and divisive hierarchical Bayesian clustering,” Comput Stat Data Anal, vol. 176, p. 107566, Dec. 2022, doi: 10.1016/j.csda.2022.107566.

E. K. Tokuda, C. H. Comin, and L. da F. Costa, “Revisiting agglomerative clustering,” Physica A: Statistical Mechanics and its Applications, vol. 585, Jan. 2022, doi: 10.1016/j.physa.2021.126433.

M. A. Andresen and N. Malleson, “Testing the Stability of Crime Patterns: Implications for Theory and Policy,” Journal of Research in Crime and Delinquency, vol. 48, no. 1, pp. 58–82, Feb. 2011, doi: 10.1177/0022427810384136.

S. Chainey and J. Ratcliffe, GIS and Crime Mapping. Wiley, 2005. doi: 10.1002/9781118685181.

L. Sugiharti, M. A. Esquivias, M. S. Shaari, L. Agustin, and H. Rohmawati, “Criminality and Income Inequality in Indonesia,” Soc Sci, vol. 11, no. 3, Mar. 2022, doi: 10.3390/socsci11030142.

Vania. Ceccato, Moving safely : crime and perceived safety in Stockholm’s subway stations. Lexington Books, 2013.

P. Cozens and T. Love, “A Review and Current Status of Crime Prevention through Environmental Design (CPTED),” J Plan Lit, vol. 30, no. 4, pp. 1–20, Nov. 2015, doi: 10.1177/0885412215595440.

J. Chen, H. Li, S. Luo, D. Su, T. Zang, and T. Kinoshita, “Exploring the complex association between urban form and crime: Evidence from 1,486 U.S. counties,” Journal of Urban Management, pp. 1–15, May 2024, doi: 10.1016/j.jum.2024.05.008.

L. Stolzenberg and S. J. D’Alessio, “The Effect of Divorce on Domestic Crime,” Crime Delinq, vol. 53, no. 2, pp. 281–302, Apr. 2007, doi: 10.1177/0011128705284383.

A. Murat BALCI, “Interrelations Between Family, Divorce and Crime in The Context of … INTERRELATIONS BETWEEN FAMILY, DIVORCE AND CRIME IN THE CONTEXT OF CRIMINOLOGY.” [Online]. Available: https://orcid.org/0000-0002-8506-7911

X. Hu, J. Song, and G. Wan, “Transborder spillover effects of poverty on crime: Applying spatial econometric models to Chinese data,” China Economic Review, vol. 85, p. 102178, Jun. 2024, doi: 10.1016/j.chieco.2024.102178.

S. D. Purnomo, D. A. Supriyo, R. Rusito, T. Anindito, W. Hariadi, and D. Jati, “How Economic Indicator Drive Crime? Empirical Study in Developing Country, Indonesia,” International Journal of Economics and Financial Issues, vol. 13, no. 3, pp. 94–99, May 2023, doi: 10.32479/ijefi.14309.

G. Kavaarpuo, S. A. Churchill, K. T. Baako, and K. Mintah, “Effect of crime on housing tenure: Evidence from longitudinal data in Australia,” Cities, vol. 148, p. 104847, May 2024, doi: 10.1016/j.cities.2024.104847.

Downloads

Published

16-07-2025

How to Cite

Munandar, T. A., & Ramdhania, K. F. (2025). Agglomerative Spatial Clustering Analysis for Mapping Crime Risk Zone Clusters. International Journal of Information Technology and Computer Science Applications, 3(2), 54–65. https://doi.org/10.58776/ijitcsa.v3i2.197

Issue

Section

New Submission

Most read articles by the same author(s)